38 research outputs found

    Effect of Zn doping on magnetic order and superconductivity in LaFeAsO

    Get PDF
    We report Zn-doping effect in the parent and F-doped LaFeAsO oxy-arsenides. Slight Zn doping in LaFe1x_{1-x}Znx_{x}AsO drastically suppresses the resistivity anomaly around 150 K associated with the antiferromagnetic (AFM) spin density wave (SDW) in the parent compound. The measurements of magnetic susceptibility and thermopower confirm further the effect of Zn doping on AFM order. Meanwhile Zn doping does not affect or even enhances the TcT_c of LaFe1x_{1-x}Znx_{x}AsO0.9_{0.9}F0.1_{0.1}, in contrast to the effect of Zn doping in high-TcT_c cuprates. We found that the solubility of Zn content (xx) is limited to less than 0.1 in both systems and further Zn doping (i.e., xx \geq 0.1) causes phase separation. Our study clearly indicates that the non-magnetic impurity of Zn2+^{2+} ions doped in the Fe2_2As2_2 layers affects selectively the AFM order, and superconductivity remains robust against the Zn doping in the F-doped superconductors.Comment: 7 figures, 13 pages; revised version with more dat

    Superconductivity in LaFeAs1x_{1-x}Px_{x}O: effect of chemical pressures and bond covalency

    Get PDF
    We report the realization of superconductivity by an isovalent doping with phosphorus in LaFeAsO. X-ray diffraction shows that, with the partial substitution of P for As, the Fe2_2As2_2 layers are squeezed while the La2_2O2_2 layers are stretched along the c-axis. Electrical resistance and magnetization measurements show emergence of bulk superconductivity at \sim10 K for the optimally-doped LaFeAs1x_{1-x}Px_{x}O (x=0.250.3x=0.25\sim0.3). The upper critical fields at zero temperature is estimated to be 27 T, much higher than that of the LaFePO superconductor. The occurrence of superconductivity is discussed in terms of chemical pressures and bond covalency.Comment: 5 pages, 6 figures, more data presente

    Large-area, freestanding single-crystal gold of single nanometer thickness

    Full text link
    Two-dimensional single-crystal metals are highly sought after for next-generation technologies. Here, we report large-area (>10^4 {\mu}m2), single-crystal two-dimensional gold with thicknesses down to a single-nanometer level, employing an atomic-level-precision chemical etching approach. The ultrathin thickness and single-crystal quality endow two-dimensional gold with unique properties including significantly quantum-confinement-augmented optical nonlinearity, low sheet resistance, high transparency and excellent mechanical flexibility. By patterning the two-dimensional gold into nanoribbon arrays, extremely-confined near-infrared plasmonic resonances are further demonstrated with quality factors up to 5. The freestanding nature of two-dimensional gold allows its straightforward manipulation and transfer-printing for integration with other structures. The developed two-dimensional gold provides an emerging platform for fundamental studies in various disciplines and opens up new opportunities for applications in high-performance ultrathin optoelectronic, photonic and quantum devices

    Street-Level Image Localization Based on Building-Aware Features via Patch-Region Retrieval under Metropolitan-Scale

    No full text
    The aim of image-based localization (IBL) is to localize the real location of query image by matching reference image in database with GNSS-tags. Popular methods related to IBL commonly use street-level images, which have high value in practical application. Using street-level image to tackle IBL task has the primary challenges: existing works have not made targeted optimization for urban IBL tasks. Besides, the matching result is over-reliant on the quality of image features. Methods should address their practicality and robustness in engineering application, under metropolitan-scale. In response to these, this paper made following contributions: firstly, given the critical of buildings in distinguishing urban scenes, we contribute a feature called Building-Aware Feature (BAF). Secondly, in view of negative influence of complex urban scenes in retrieval process, we propose a retrieval method called Patch-Region Retrieval (PRR). To prove the effectiveness of BAF and PRR, we established an image-based localization experimental framework. Experiments prove that BAF can retain the feature points that fall on the building, and selectively lessen the feature points that fall on other things. While this effectively compresses the storage amount of feature index, we can also improve recall of localization results; implemented in the stage of geometric verification, PRR compares matching results of regional features and selects the best ranking as final result. PRR can enhance effectiveness of patch-regional feature. In addition, we fully confirmed the superiority of our proposed methods through a metropolitan-scale street-level image dataset

    Street-Level Image Localization Based on Building-Aware Features via Patch-Region Retrieval under Metropolitan-Scale

    No full text
    The aim of image-based localization (IBL) is to localize the real location of query image by matching reference image in database with GNSS-tags. Popular methods related to IBL commonly use street-level images, which have high value in practical application. Using street-level image to tackle IBL task has the primary challenges: existing works have not made targeted optimization for urban IBL tasks. Besides, the matching result is over-reliant on the quality of image features. Methods should address their practicality and robustness in engineering application, under metropolitan-scale. In response to these, this paper made following contributions: firstly, given the critical of buildings in distinguishing urban scenes, we contribute a feature called Building-Aware Feature (BAF). Secondly, in view of negative influence of complex urban scenes in retrieval process, we propose a retrieval method called Patch-Region Retrieval (PRR). To prove the effectiveness of BAF and PRR, we established an image-based localization experimental framework. Experiments prove that BAF can retain the feature points that fall on the building, and selectively lessen the feature points that fall on other things. While this effectively compresses the storage amount of feature index, we can also improve recall of localization results; implemented in the stage of geometric verification, PRR compares matching results of regional features and selects the best ranking as final result. PRR can enhance effectiveness of patch-regional feature. In addition, we fully confirmed the superiority of our proposed methods through a metropolitan-scale street-level image dataset

    Evaluation of Geological Disaster Sensitivity in Shuicheng District Based on the WOE-RF Model

    No full text
    To improve the prevention and control of geological disasters in Shuicheng District, 10 environmental factors—slope, slope direction, curvature, NDVI, stratum lithology, distance from fault, distance from river system, annual average rainfall, distance from road and land use—were selected as evaluation indicators by integrating factors such as landform, basic geology, hydrometeorology and engineering activities. Based on the weight of evidence, random forest, support vector machine and BP neural network algorithms were introduced to build WOE-RF, WOE-SVM and WOE-BPNN models. The sensitivity of Shuicheng District to geological disasters was evaluated using the GIS platform, and the region was divided into areas of extremely high, high, medium, low and extremely low sensitivity to geological disasters. By comparing and analyzing the ROC curve and the distribution law of the sensitivity index, the AUC evaluation accuracy of the WOE-RF, WOE-SVM and WOE-BPNN models was 0.836, 0.807 and 0.753, respectively; the WOE-RF model was shown to be the most effective. In the WOE-RF model, the extremely high-, high-, medium-, low- and extremely low-sensitivity areas accounted for 15.9%, 16.9%, 19.3%, 21.0% and 26.9% of the study area, respectively. The extremely high- and high-sensitivity areas are mainly concentrated in areas with large slopes, broken rock masses, river systems and intensive human engineering activity. These research results are consistent with the actual situation and can provide a reference for the prevention and control of geological disasters in this and similar mountainous areas
    corecore