6,394 research outputs found

    Secrecy sum rate maximization in non-orthogonal multiple access

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a promising technique for providing high data rates in 5G systems. This letter is to study physical layer security in a single-input single-output (SISO) NOMA system consisting of a transmitter, multiple legitimate users and an eavesdropper. The aim of this letter is to maximize the secrecy sum rate (SSR) of the NOMA system subject to the users' quality of service (QoS) requirements. We firstly identify the feasible region of the transmit power for satisfying all users' QoS requirements. Then we derive the closed-form expression of an optimal power allocation policy that maximizes the SSR. Numerical results are provided to show a significant SSR improvement by NOMA compared with conventional orthogonal multiple access (OMA)

    Secure Short-Packet Communications for Mission-Critical IoT Applications

    Full text link
    In pervasive Internet of Things (IoT) applications, the use of short packets is expected to meet the stringent latency requirement in ultra-reliable low-latency communications; however, the incurred security issues and the impact of finite blocklength coding on the physical-layer security have not been well understood. This paper comprehensively investigates the performance of secure short-packet communications in a mission-critical IoT system with an external multi-antenna eavesdropper. An analytical framework is proposed to approximate the average achievable secrecy throughput of the system with finite blocklength coding. To gain more insight, a simple case with a single-antenna access point (AP) is considered first, in which the secrecy throughput is approximated in a closed form. Based on that result, the optimal blocklengths to maximize the secrecy throughput with and without the reliability and latency constraints, respectively, are derived. For the case with a multi-antenna AP, following the proposed analytical framework, closed-form approximations for the secrecy throughput are obtained under both beamforming and artificial-noise-aided transmission schemes. Numerical results verify the accuracy of the proposed approximations and illustrate the impact of the system parameters on the tradeoff between transmission latency and reliability under the secrecy constraint.Comment: 14 pages, 8 figures, accepted for publication in the IEEE Transactions on Wireless Communication
    • …
    corecore