124 research outputs found

    Self Sparse Generative Adversarial Networks

    Get PDF
    Generative Adversarial Networks (GANs) are an unsupervised generative model that learns data distribution through adversarial training. However, recent experiments indicated that GANs are difficult to train due to the requirement of optimization in the high dimensional parameter space and the zero gradient problem. In this work, we propose a Self Sparse Generative Adversarial Network (Self-Sparse GAN) that reduces the parameter space and alleviates the zero gradient problem. In the Self-Sparse GAN, we design a Self-Adaptive Sparse Transform Module (SASTM) comprising the sparsity decomposition and feature-map recombination, which can be applied on multi-channel feature maps to obtain sparse feature maps. The key idea of Self-Sparse GAN is to add the SASTM following every deconvolution layer in the generator, which can adaptively reduce the parameter space by utilizing the sparsity in multi-channel feature maps. We theoretically prove that the SASTM can not only reduce the search space of the convolution kernel weight of the generator but also alleviate the zero gradient problem by maintaining meaningful features in the Batch Normalization layer and driving the weight of deconvolution layers away from being negative. The experimental results show that our method achieves the best FID scores for image generation compared with WGAN-GP on MNIST, Fashion-MNIST, CIFAR-10, STL-10, mini-ImageNet, CELEBA-HQ, and LSUN bedrooms, and the relative decrease of FID is 4.76% ~ 21.84%

    The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conidia are considered to be the primary cause of infections by <it>Trichophyton rubrum</it>.</p> <p>Results</p> <p>We have developed a cDNA microarray containing 10250 ESTs to monitor the transcriptional strategy of conidial germination. A total of 1561 genes that had their expression levels specially altered in the process were obtained and hierarchically clustered with respect to their expression profiles. By functional analysis, we provided a global view of an important biological system related to conidial germination, including characterization of the pattern of gene expression at sequential developmental phases, and changes of gene expression profiles corresponding to morphological transitions. We matched the EST sequences to GO terms in the <it>Saccharomyces </it>Genome Database (SGD). A number of homologues of <it>Saccharomyces cerevisiae </it>genes related to signalling pathways and some important cellular processes were found to be involved in <it>T. rubrum </it>germination. These genes and signalling pathways may play roles in distinct steps, such as activating conidial germination, maintenance of isotropic growth, establishment of cell polarity and morphological transitions.</p> <p>Conclusion</p> <p>Our results may provide insights into molecular mechanisms of conidial germination at the cell level, and may enhance our understanding of regulation of gene expression related to the morphological construction of <it>T. rubrum</it>.</p

    Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags

    Get PDF
    BACKGROUND: Dermatophytes are the primary causative agent of dermatophytoses, a disease that affects billions of individuals worldwide. Trichophyton rubrum is the most common of the superficial fungi. Although T. rubrum is a recognized pathogen for humans, little is known about how its transcriptional pattern is related to development of the fungus and establishment of disease. It is therefore necessary to identify genes whose expression is relevant to growth, metabolism and virulence of T. rubrum. RESULTS: We generated 10 cDNA libraries covering nearly the entire growth phase and used them to isolate 11,085 unique expressed sequence tags (ESTs), including 3,816 contigs and 7,269 singletons. Comparisons with the GenBank non-redundant (NR) protein database revealed putative functions or matched homologs from other organisms for 7,764 (70%) of the ESTs. The remaining 3,321 (30%) of ESTs were only weakly similar or not similar to known sequences, suggesting that these ESTs represent novel genes. CONCLUSION: The present data provide a comprehensive view of fungal physiological processes including metabolism, sexual and asexual growth cycles, signal transduction and pathogenic mechanisms

    14-3-3ζ Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells

    Get PDF
    The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner and function as adapter or scaffold proteins in signal transduction pathways. One family member, 14-3-3ζ, is believed to function in cell signaling, cycle control, and apoptotic death. A systematic proteomic analysis done in our laboratory has identified signal transducers and activators of transcription 3 (Stat3) as a novel 14-3-3ζ interacting protein. Following our initial finding, in this study, we provide evidence that 14-3-3ζ interacts physically with Stat3. We further demonstrate that phosphorylation of Stat3 at Ser727 is vital for 14-3-3ζ interaction and mutation of Ser727 to Alanine abolished 14-3-3ζ/Stat3 association. Inhibition of 14-3-3ζ protein expression in U266 cells inhibited Stat3 Ser727 phosphorylation and nuclear translocation, and decreased both Stat3 DNA binding and transcriptional activity. Moreover, 14-3-3ζ is involved in the regulation of protein kinase C (PKC) activity and 14-3-3ζ binding to Stat3 protects Ser727 dephosphorylation from protein phosphatase 2A (PP2A). Taken together, our findings support the model that multiple signaling events impinge on Stat3 and that 14-3-3ζ serves as an essential coordinator for different pathways to regulate Stat3 activation and function in MM cells

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×1037cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×1071.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Numerical Simulation of Flow Field in Air-Jet Loom Main Nozzle

    No full text
    To improve airflow injection capacity of the main nozzle and decrease backflow phenomenon, a new main nozzle structure with two throats is designed. Negative pressure value and negative pressure zone length are first proposed evaluating the strength of backflow phenomenon. Commercial computational fluid dynamic (CFD) code “Fluent” is performed to simulate the flow field inside and outside the main nozzle. Exit velocity increases about 10 m/s in new main nozzle. Airflow core length of the new main nozzle is 35% higher than that of commonly used main nozzle. Smaller negative pressure value and shorter negative pressure zone length mean a weaker backflow phenomenon in the new main nozzle. Bigger air drag force indicates stronger weft insertion ability in the new main nozzle

    Negative Regulation of PTEN by MicroRNA-221 and Its Association with Drug Resistance and Cellular Senescence in Lung Cancer Cells

    No full text
    Objective. Chemotherapy is the routine method for treating many cancers, but long-term treatment may result in developing resistance to the drugs. The aim of this study was to identify whether noncoding RNAs play a role in drug resistance and how they affect drug resistance. Materials and Methods. The expression levels of miR-221 in different lung cancer cell lines H226, H1299, and A549 were measured. H1299 and A549 cell lines were transfected to overexpress and downexpress miR-221, and cell viability and cell senescence were determined. The PTEN/Akt pathway was then examined by real-time polymerase chain reaction and Western blot analysis. Results. MiR-221 together with proteins MDR1 and ABCG2 was upregulated in Cisplatin-resistant A549 lung cancer cells. Anti-miR-221 inhibits proliferation and induces senescence in lung cancer cells. PTEN/Akt pathway axis was identified as a target of drug resistance induced by miR-221. Conclusion. Our results revealed that miR-221 is an important regulator for chemotherapy sensitivity and showed miR-221 as a potential target for drug sensitization

    Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats

    No full text
    Alcohol consumption causes nicotinic acid deficiency. The present study was undertaken to determine whether dietary nicotinic acid supplementation provides beneficial effects on alcohol-induced endotoxin signaling and the possible mechanisms at the gut-liver axis. Male Sprague-Dawley rats were pair-fed the Lieber-DeCarli liquid diets containing ethanol or isocaloric maltose dextrin for eight weeks, with or without dietary supplementation with 750 mg/liter nicotinic acid. Chronic alcohol feeding elevated the plasma endotoxin level and activated hepatic endotoxin signaling cascade, which were attenuated by nicotinic acid supplementation. Alcohol consumption remarkably decreased the mRNA levels of claudin-1, claudin-5, and ZO-1 in the distal intestine, whereas nicotinic acid significantly up-regulated these genes. The concentrations of endotoxin, ethanol, and acetaldehyde in the intestinal contents were increased by alcohol exposure, and niacin supplementation reduced the intestinal endotoxin and acetaldehyde levels. Nicotinic acid supplementation upregulated the intestinal genes involved in aldehyde detoxification via transcriptional regulation. These results demonstrate that modulation of the intestinal barrier function and bacterial endotoxin production accounts for the inhibitory effects of nicotinic acid on alcohol-induced endotoxemia and hepatic inflammation
    corecore