33 research outputs found

    Coal based carbon dots: recent advances in synthesis, properties, and applications

    Get PDF
    Carbon dots are zero-dimensional carbon nanomaterials with quantum confinement effects and edge effects, which have aroused great interests in many disciplines such as energy, chemistry, materials, and environmental applications. They can be prepared by chemical oxidation, electrochemical synthesis, hydrothermal preparation, arc discharge, microwave synthesis, template method, and many other methods. However, the raw materials' high cost, the complexity and environmental-unfriendly fabrication process limit their large-scale production and commercialization. Herein, we review the latest developments of coal-based carbon dots about selecting coal-derived energy resources (bituminous coal, anthracite, lignite, coal tar, coke, etc.) the developments of synthesis processes, surface modification, and doping of carbon dots. The coal-based carbon dots exhibit the advantages of unique fluorescence, efficient catalysis, excellent water solubility, low toxicity, inexpensive, good biocompatibility, and other advantages, which hold the potentiality for a wide range of applications such as environmental pollutants sensing, catalyst preparation, chemical analysis, energy storage, and medical imaging technology. This review aims to provide a guidance of finding abundant and cost-effective precursors, green, simple and sustainable production processes to prepare coal-based carbon dots, and make further efforts to exploit the application of carbon dots in broader fields

    Development and validation of a model for predicting the risk of brain arteriovenous malformation rupture based on three-dimensional morphological features

    Get PDF
    ObjectiveBrain arteriovenous malformation (bAVM) is an important reason for intracranial hemorrhage. This study aimed at developing and validating a model for predicting bAVMs rupture by using three-dimensional (3D) morphological features extracted from Computed Tomography (CT) angiography.Materials and methodsThe prediction model was developed in a cohort consisting of 412 patients with bAVM between January 2010 and December 2020. All cases were partitioned into training and testing sets in the ratio of 7:3. Features were extracted from the 3D model built on CT angiography. Logistic regression was used to develop the model, with features selected using L1 Regularization, presented with a nomogram, and assessed with calibration curve, receiver operating characteristic (ROC) curve and decision curve analyze (DCA).ResultsSignificant variations in associated aneurysm, deep located, number of draining veins, type of venous drainage, deep drainage, drainage vein entrance diameter (Dv), type of feeding arteries, middle cerebral artery feeding, volume, Feret diameter, surface area, roundness, elongation, mean density (HU), and median density (HU) were found by univariate analysis (p < 0.05). The prediction model consisted of associated aneurysm, deep located, number of draining veins, deep drainage, Dv, volume, Feret diameter, surface area, mean density, and median density. The model showed good discrimination, with a C-index of 0.873 (95% CI, 0.791–0.931) in the training set and 0.754 (95% CI, 0.710–0.795) in the testing set.ConclusionsThis study presented 3D morphological features could be conveniently used to predict hemorrhage from unruptured bAVMs

    A simple quinoline-thiophene Schiff base turn-off chemosensor for Hg2+ detection

    Get PDF
    A new Schiff base probe (QT) consisting of 8-aminoquinoline (Q) and thiophene-2-carboxaldehyde (T) moieties has been synthesized. QT undergoes chelation-enhanced fluorescence quenching when exposed to Hg2+ due to coordination by the sulfur and nitrogen atoms of QT thus forming a facile “turn-off” sensor. The formation of the chelation complex was confirmed by UV–visible absorption and emission spectral measurements, 1H NMR titration and density functional theory calculations. These studies revealed that the probe exhibits high selectivity and sensitivity towards Hg2+ in the presence of other common metal ions. A low detection limit of 23.4 nM was determined and a Job plot confirmed a 2:1 stoichiometry between QT and Hg2+. The potential utility of QT as a sensor for Hg2+ ions in human HeLa cells was determined by confocal fluorescence microscopy, and its suitability for use in the field with environmental samples was tested with Whatman filter paper strips

    Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: A preliminary study

    Get PDF
    Anterior cruciate ligament (ACL) reconstruction remains a formidable clinical challenge because of the lack of vascularization and adequate cell numbers in the joint cavity. In this study, we developed a novel strategy to mimic the early stage of repair in vivo, which recapitulated extra-articular inflammatory response to facilitate the early ingrowth of blood vessels and cells. A vascularized ectopic tissue engineered ligament (ETEL) with silk collagen scaffold was developed and then transferred to reconstruct the ACL in rabbits without interruption of perfusion. At 2 weeks after ACL reconstruction, more well-perfused cells and vessels were found in the regenerated ACL with ETEL, which decreased dramatically at the 4 and 12 week time points with collagen deposition and maturation. ACL treated with ETEL exhibited more mature ligament structure and enhanced ligament-bone healing post-reconstructive surgery at 4 and 12 weeks, as compared with the control group. In addition, the ETEL group was demonstrated to have higher modulus and stiffness than the control group significantly at 12 weeks post-reconstructive surgery. In conclusion, our results demonstrated that the ETEL can provide sufficient vascularity and cellularity during the early stages of healing, and subsequently promote ACL regeneration and ligament-bone healing, suggesting its clinic use as a promising therapeutic modality. Statement of Significance Early inflammatory cell infiltration, tissue and vessels ingrowth were significantly higher in the extra articular implanted scaffolds than theses in the joint cavity. By mimicking the early stages of wound repair, which provided extra-articular inflammatory stimulation to facilitate the early ingrowth of blood vessels and cells, a vascularized ectopic tissue engineered ligament (ETEL) with silk collagen scaffold was constructed by subcutaneous implantation for 2 weeks. The fully vascularized TE ligament was then transferred to rebuild ACL without blood perfusion interruption, and was demonstrated to exhibit improved ACL regeneration, bone tunnel healing and mechanical properties. (C) 2017 Published by Elsevier Ltd on behalf of Acta Materialia Inc

    Prognostic factors of patients with extremity myxoid liposarcomas after surgery

    No full text
    Abstract Background Extremity myxoid liposarcoma (MLS) is a rare soft tissue sarcoma in adults. We performed this study to define distinctive clinical features of extremity MLS by assessing prognostic factors. Methods Between 1973 and 2015, 1756 patients with extremity MLS who underwent surgical resection were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database of the US National Cancer Institute. Both overall survival (OS) and cancer-specific survival (CSS) were assessed using the Kaplan–Meier method (to obtain OS and CSS curves) and a Cox proportional hazards regression model. Results Of the 1756 patients with extremity MLS, the mean and median patient age at diagnosis were 47 and 45 years, respectively. More than half (n = 1027, 58.5%) of the patients were male. In terms of location, 10.5% tumors were located in the upper limbs and 89.5% in lower limbs. All patients received local surgery, and about half of the patients (57.2%) received radiation treatment. The 5- and 10-year OS rates of the entire cohort were 86.4% and 75.9%, respectively. The 5- and 10-year CSS rates were 90.5% and 85.2%, respectively. On multivariate analysis, older age, male gender, high tumor grade, and tumor size > 10 cm were found to be independent risk factors of both decreased OS and CSS. Year of diagnosis ≥ year 2000 was significantly associated with an increased CSS. In addition, radiation treatment failed to become an independent risk factor for either OS or CSS. Conclusion We identified age, gender, tumor grade, year of diagnosis, and tumor size as independent prognostic factors for OS and CSS in patients with extremity MLS

    Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes

    No full text
    Abstract Background Bilirubin-induced neurological dysfunction (BIND), a severe complication of extreme neonatal hyperbilirubinemia, could develop into permanent neurodevelopmental impairments. Several studies have demonstrated that inflammation and nerve cell death play important roles in bilirubin-induced neurotoxicity; however, the underlying mechanism remains unidentified. Methods The present study was intended to investigate whether pyroptosis, a highly inflammatory form of programmed cell death, participated in the bilirubin-mediated toxicity on cultured rat cortical astrocytes. Further, VX-765, a potent and selective competitive drug, was used to inhibit the activation of caspase-1. The effects of VX-765 on astrocytes treated with bilirubin, including the cell viability, morphological changes of the cell membrane and nucleus, and the production of pro-inflammation cytokines, were observed. Results Stimulation of the astrocytes with unconjugated bilirubin (UCB) at the conditions mimicking those of jaundiced newborns significantly increased the activation of caspase-1. Further, caspase-1 activation was inhibited by treatment with VX-765. Compared with UCB-treated astrocytes, the relative cell viability of VX-765-pretreated astrocytes was improved; meanwhile, the formation of plasma membrane pores was prevented, as measured by lactate dehydrogenase release, trypan blue staining, and ethidium bromide (EtBr) uptake. Moreover, DNA fragmentation was partly attenuated and the release of IL-1β and IL-18 was apparently decreased. Conclusion Pyroptosis is involved in the process of UCB-induced rat cortical astrocytes’ injury in vitro and may be the missing link of cell death and inflammatory response exacerbating UCB-related neurotoxicity. More importantly, the depression of caspase-1 activation, the core link of pyroptosis, attenuated UCB-induced cellular dysfunction and cytokine release, which might shed light on a new therapeutic approach to BIND

    Fabrication and application of sers-active cellulose fibers regenerated from waste resource

    No full text
    Funding Information: Acknowledgments: The authors would like to acknowledge the support from the Science Research Project of Education Department of Liaoning Province of China (no. L2019011) and the talent scientific research fund of LSHU (no. 2017XJJ-037). Funding Information: Funding: This research was funded by Science Research Project of Education Department of Liaoning Province of China (No. L2019011) and the talent scientific research fund of LNPU (No. 2017XJJ-037). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The flexible SERS substrate were prepared base on regenerated cellulose fibers, in which the Au nanoparticles were controllably assembled on fiber through electrostatic interaction. The cellulose fiber was regenerated from waste paper through the dry-jet wet spinning method, an eco-friendly and convenient approach by using ionic liquid. The Au NPs could be controllably distributed on the surface of fiber by adjusting the conditions during the process of assembling. Finite-difference time-domain theoretical simulations verified the intense local electromagnetic fields of plasmonic composites. The flexible SERS fibers show excellent SERS sensitivity and adsorption capability. A typical Raman probe molecule, 4-Mercaptobenzoicacid (4-MBA), was used to verify the SERS cellulose fibers, the sensitivity could achieve to 10−9 M. The flexible SERS fibers were successfully used for identifying dimetridazole (DMZ) from aqueous solution. Furthermore, the flexible SERS fibers were used for detecting DMZ from the surface of fish by simply swabbing process. It is clear that the fabricated plasmonic composite can be applied for the identifying toxins and chemicals.Peer reviewe

    Channel Estimation Using Dual-Dependent Pilots in FBMC/OQAM Systems

    No full text
    corecore