10,029 research outputs found

    Quantum Transport of Bosonic Cold Atoms in Double Well Optical Lattices

    Full text link
    We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultra-cold bosonic atoms in a double well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well tunneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as non-interacting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can measured in the time of flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the non-interacting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.Comment: 8 pages, 9 figures, accepted for publication in Phys. Rev.

    Berry Phase Effects on Electronic Properties

    Get PDF
    Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.Comment: 48 pages, 16 figures, submitted to RM

    Calculation of the Branching Ratio of B−→hc+K−B^{-}\to h_{c}+K^{-} in PQCD

    Get PDF
    The branching ratio of B−→hc+K−B^-\to h_c+K^- is re-evaluated in the PQCD approach. In this theoretical framework all the phenomenological parameters in the wavefunctions and Sudakov factor are priori fixed by fitting other experimental data, and in the whole numerical computations we do not introduce any new parameter. Our results are consistent with the upper bounds set by the Babar and Belle measurements.Comment: 12 pages, 1 figure, version to appear in Phys. Rev.
    • …
    corecore