1,328 research outputs found

    Dynamical tunneling-assisted coupling of high-Q deformed microcavities using a free-space beam

    Get PDF
    We investigate the efficient free-space excitation of high-Q resonance modes in deformed microcavities via dynamical tunneling-assisted coupling. A quantum scattering theory is employed to study the free-space transmission properties, and it is found that the transmission includes the contribution from (1) the off-resonance background and (2) the on-resonance modulation, corresponding to the absence and presence of high-Q modes, respectively. The theory predicts asymmetric Fano-like resonances around high-Q modes in background transmission spectra, which are in good agreement with our recent experimental results. Dynamical tunneling across Kolmogorov-Arnold-Moser tori, which plays an essential role in the Fano-like resonance, is further studied. This efficient free-space coupling holds potential advantages to simplify experimental conditions and excite high-Q modes in higher-index-material microcavities

    Impact of Zr substitution on the electronic structure of ferroelectric hafnia

    Full text link
    HfO2\mathrm{HfO_2}-based dielectrics are promising for nanoscale ferroelectric applications, and the most favorable material within the family is Zr-substituted hafnia, i.e., Hf1βˆ’xZrxO2\mathrm{Hf_{1-x}Zr_xO_2} (HZO). The extent of Zr substitution can be great, and x is commonly set to 0.5. However, the band gap of ZrO2\mathrm{ZrO_2} is lower than HfO2\mathrm{HfO_2}, thus it is uncertain how the Zr content should influence the electronic band structure of HZO. A reduced band gap is detrimental to the cycling endurance as charge injection and dielectric breakdown would become easier. Another issue is regarding the comparison on the band gaps between HfO2\mathrm{HfO_2}/ZrO2\mathrm{ZrO_2} superlattices and HZO solid-state solutions. In this work we systematically investigated the electronic structures of HfO2\mathrm{HfO_2}, ZrO2\mathrm{ZrO_2} and HZO using self-energy corrected density functional theory. In particular, the conduction band minimum of Pca21Pca2_1-HfO2\mathrm{HfO_2} is found to lie at an ordinary k-point on the Brillouin zone border, not related to any interlines between high-symmetry k-points. Moreover, the rule of HZO band gap variation with respect to x has been extracted. The physical mechanisms for the exponential reduction regime and linear decay regime have been revealed. The band gaps of HfO2\mathrm{HfO_2}/ZrO2\mathrm{ZrO_2} ferroelectric superlattices are investigated in a systematic manner, and the reason why the superlattice could possess a band gap lower than that of ZrO2\mathrm{ZrO_2} is revealed through comprehensive analysis.Comment: 23 pages, 9 figure

    Surface Stabilization of O3-type Layered Oxide Cathode to Protect the Anode of Sodium Ion Batteries for Superior Lifespan

    Get PDF
    Even though the energy density of O3-type layer-structured metal oxide cathode can fully reach the requirement for large-scale energy storage systems, the cycling lifespan still cannot meet the demand for practical application once it is coupled with a non-sodium-metal anode in full-cell system. Transition metal dissolution into the electrolyte occurs along with continuous phase transformation and accelerates deterioration of the crystal structure, followed by migration and finally deposition on the anode to form a vicious circle. Surface engineering techniques are employed to modify the interface between active materials and the electrolyte by coating them with a thin layer of AlPO4 ion conductor. This stable thin layer can stabilize the surface crystal structure of the cathode material by avoiding element dissolution. Meanwhile, it can protect the anode from increased resistance by suppressing the dissolution-migration-deposition process. This technique is a promising method to improve the lifetime for the future commercialization
    • …
    corecore