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Surface Stabilization of O3-type Layered Oxide
Cathode to Protect the Anode of Sodium Ion
Batteries for Superior Lifespan
Qi Zhang,1 Qin-Fen Gu,2,* Yang Li,1 Hai-Ning Fan,1 Wen-Bin Luo,1,3,* Hua- Kun Liu,1 and Shi-Xue Dou1

SUMMARY

Even though the energy density of O3-type layer-structured metal oxide cathode can fully reach the

requirement for large-scale energy storage systems, the cycling lifespan still cannot meet the demand

for practical application once it is coupledwith a non-sodium-metal anode in full-cell system. Transition

metal dissolution into the electrolyte occurs along with continuous phase transformation and acceler-

ates deterioration of the crystal structure, followed by migration and finally deposition on the anode

to form a vicious circle. Surface engineering techniques are employed tomodify the interface between

active materials and the electrolyte by coating themwith a thin layer of AlPO4 ion conductor. This sta-

ble thin layer can stabilize the surface crystal structure of the cathode material by avoiding element

dissolution. Meanwhile, it can protect the anode from increased resistance by suppressing the disso-

lution-migration-deposition process. This technique is a promising method to improve the lifetime for

the future commercialization.

INTRODUCTION

Sodium ion batteries (SIBs) have been considered as one of themost promising systems to substitute for lithium

ion batteries (LIBs) due to the increasing requirement for large-scale energy storage systems, the high abun-

dance, and the economic efficiency of resources. During long-term academic research, industrial SIB prototypes

have been created for practical application based on achievements on activematerials development and similar

fabrication techniquesdirectly transferred frommatureLIBs.Comparedwith the LIB system, however, theenergy

density and cycling lifetime of SIB system cannot simultaneously satisfy the basic requirements of themarket for

energy storage systems (Han et al., 2015; Lao et al., 2017; Deng et al., 2018a; Lu et al., 2018a, 2018b). Among the

various promising cathode materials, O3-type layer-structured transition metal oxides (TMOs) have achieved

huge success because they exhibit competitive performance and a comparable energy density to LIBs via com-

posite andstructureoptimization.Theyhave theadvantageofhighenergydensity resulting fromtheir highoper-

ating potential, along with high specific capacity and good compatibility with the anode because of their high

initial coulombic efficiency. Their energy density can reach as high as 210 Wh kg�1, which can fully meet the

requirement for large-scale energy storage systems (Xiao et al., 2018; Guo et al., 2015a; Yao et al., 2017;

Wang et al., 2017; Deng et al., 2018, 2019; Gao et al., 2018; Rong et al., 2018; Zhu et al., 2019). Meanwhile, the

mature and industrially feasible techniques to manufacture O3-type layer-structured TMOs have accelerated

the progress toward practical application. Taking our group’s previous work, for example, Mg and Cu element

substitution can optimize their environmental stability and alleviate the continuous phase transformation by

decreasing the energy barriers of the multiple phase transformations during sodium deintercalation and inter-

calation processes, and the environmental stability and cycling lifetime have been improved (Deng et al.,

2018a, 2018b). The acidic electrolyte ions attack the cathode, however, and thedissolutionof the transitionmetal

(TM) elements in the electrolyte leads to the collapse of the crystal structure and capacity fading. Moreover, the

dissolved metal ions will contaminate the electrolyte and the solid-electrolyte interphase layer (SEI), which is

further deposited on the anode side, to form a vicious circle (Cho et al., 2003; Zhan et al., 2013; Yan et al.,

2016; Banerjee et al., 2017a; Guo et al., 2017; Lu et al., 2018a, 2018b; Zhan et al., 2018). All these comprehensive

factors from every section of the battery system will gradually degrade the full-cell system so that it exhibits un-

satisfactory performance. Therefore the urgent issue that needs to be solved is how to improve the cycling life-

time of O3-type layer-structured metal oxides, particularly in a full-cell system with non-sodiummetal as anode,

fromtheperspectiveof thewhole systemrather than fromthatof individual sections.Herein, surface engineering

is employed to modify the interface between the active materials and the electrolyte, further increasing

the cycling lifetime of the full-cell system by suppressing the dissolution-migration-deposition (DMD)

process. Owing to the strong resistance to the reaction with the electrolyte from the high electronegativity of
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(PO4)
3- polyanionswith Al3+ cations, the surfacemodification by coatingwith a stable AlPO4 protective thin layer

in this work not only can alleviate the crystal structure collapse of the cathode material but also can protect the

anode in the full-cell system by inhibiting the DMD process. Meanwhile, this thin protective layer can further

improve its environmental stability in the ambient environment (Jung and Han, 2013; Yang et al., 2014; Kim

et al., 2014; Park et al., 2015).

RESULTS AND DISCUSSION

Morphology and Structure Characterization of C-NMNM

The schematic diagram in Figure 1A shows the surface modification process on Na[Li0.05Mn0.50Ni0.30
Cu0.10Mg0.05]O2 (P-NMNM) cathode material. A completely ionized solution consisting of aluminum

ions and phosphate anions can be deposited uniformly on the surface of the cathode material particles

by a rotary evaporator. Then, the residue is calcined at 400�C for 1 h, and the final air-stable Na[Li0.05Mn0.50
Ni0.30Cu0.10Mg0.05]O2 coated with a thin layer of AlPO4 (C-NMNM) was obtained. The obtained product has

an X-ray diffraction (XRD) pattern that indicates the standard same XRD phase of O3-type layer-structured

cathode material as the pure material and that AlPO4 (indexed to 00-050-0054) was formed on the surface

of the pure cathode material in Figure S1 in the Supplemental Information. The structure was investigated

in further detail by scanning transmission electron microscopy (STEM) assisted by energy-dispersive spec-

troscopy (EDS), as shown in Figures 1B–1K and Figures S2 and S3. From the composite and phase

Figure 1. Morphology and Phase of C-NMNM

(A) Schematic illustration of the synthetic process for the AlPO4 coating on the surface of Na[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2.

(B) High-angle annular dark field (HAADF)-STEM image.

STEM-EDSmapping of crystalline phase:Mixedphase of C-NMNM (C), AlPO4 shell phase (D) and core phase ofNa[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2 (E).

(F–K) Element Na (F), Mn (G), Ni (H), Mg (I), Al (J) and P (K) distributions from the edge to the bulk material of C-NMNM.

See also Figures S1–S5.
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distribution, as shown in Figures 1C–1E, S2I, and S2J, it is clearly concluded that there are two phases in the

composite with a core-shell structure. The entire bulk is uniformly wrapped by the protection layer. In the

individual phase area, different elements, such as Na, Mn, Ni, and Mg, have a uniform distribution in the

core phases. In the layer phase, Al and P exhibit a uniform distribution as well. All these results provide

strong evidence to confirm that there is a thin layer of homogeneous coating.

To analyze the composite with the coating layer and the interface between the core materials and the

coating layer, high-angle annular dark-field (HAADF)-STEM assisted by electron energy loss spectroscopy

(EELS) was utilized at atomic resolution in Figure S4. In Figures S4A and S4B, the obtained C-NMNM retains

the layered structure with an ~3-nm uniform coating layer, which was also confirmed by HAADF-STEM-EDS

as shown in Figures S2 and S3. Owing to the unstable AlPO4 under high voltage, the lattice pattern was not

seen by STEM. In Figures S4C–S4E, it is seen that the particle of C-NMNM was well crystallized with lattice

spacing of 2.56 and 2.44 Å, corresponding to the spacings of the (101) and (012) planes of bulk P-NMNM,

which is consistent with the intensity profiles along the bright bands in Figure S4C. After surface modifica-

tion, the bulkmaterial shows no change, and theAl3+ barely diffuses into the bulkmaterial to formadifferent

phase. The Al and P elements are precisely dispersed in the surface area, implying that AlPO4 exists as a

physically distinct phase attached to the P-NMNM surface, which is consistent with the result of Powder

X-ray diffraction (PXRD) (Figure S1) and X-ray photoelectron spectroscopy (XPS) in Figure S5. To understand

the core-shell interface of the C-NMNMdeeply, EELS characterization and the corresponding spectra were

simultaneously obtained on different selected areas of the C-NMNM particle, as shown in Figures S4F and

S4G. In Figure S4F, Al-O and P-O bonds are detected in the edge area. After surface modification, the in-

tensity of the Mn and Ni signals showed no obvious shift (Figure S4I), indicating that the coating layer of

AlPO4 has no effect on the crystal structure of the active material. All these characterizations demonstrate

that this approach for modifying the P-NMNM surface yields a continuous surface region without disturbing

the layered crystalline structure. These types of thin-layer coating are beneficial to the material stability as

well (Cho et al., 2003; Xiao et al., 2013; Yang et al., 2014; Yan et al., 2016; Guo et al., 2017).

Electrochemical Performance in Half- and Full-Cell Systems

The electrochemical performances of P-NMNM and C-NMNM were characterized for comparison within the

voltage range of 2.0–4.0 V. To clarify the capacity contribution from the AlPO4 in the composite for the cathode

materials, the charge-discharge curves of the pure AlPO4 were measured, and no plateau was observed in the

voltage rangeof 2.0–4.0Vas shown inFigureS6, indicating that the reversible capacity is negligible in the voltage

rangeof 2.0–4.0 V. Theelectrochemical performancesof theP-NMNMandC-NMNMelectrodesweremeasured

at the 0.5 and 1 C rates within the potential range from 2.0 to 4.0 V versus Na/Na+, respectively. The charge and

discharge profiles of these cathode materials have similar plateaus, as shown in Figure S7. C-NMNM delivers

138mAhg�1 at 0.5 C, whereas P-NMNMachieves 150mAhg�1. At the 1 C rate, these electrodes also show rela-

tively high reversible capacity of 114 and 125mAh g�1, respectively (Figures 2A and 2B). These results show that

surface modification will result in a slight capacity loss. To further study the long-term cycling performance (Fig-

ures 2C and 2D), the C-NMNMelectrode was found to retain 87% and 95% of its capacity for 400 cycles at 0.5 C

and 1 C, respectively, which was much more stable than P-NMNM (67% and 81%). This indicates that the

C-NMNM electrode maintains better structural stability compared with the P-NMNM electrode (Alvarado

et al., 2017). Meanwhile, the coulombic efficiency of C-NMNM over the whole cycling process is above 99.0%,

which can meet the requirement for practical application. This significant improvement was mainly attributed

to theAlPO4 surface segregation,which, to someextent, protects thebulkmaterials fromcorrosion by the acidic

electrolyte and structural collapse during the phase transformation. To evaluate the overall performance of

C-NMNM, a comparison of stability has been made between C-NMNM and other published layered metal ox-

ides inFigures 2Eand2F.Duringcyclingat the0.5C (Figure2E) and1C rates (Figure2F), the capacity retentionof

C-NMNMis superior to thoseof thedifferent kindsofP2,O3, andP2/O3-typecathodematerials (Yaoet al., 2017;

Chen et al., 2015; Li et al., 2017; Guo et al., 2015a; Zhang et al., 2016a; Dai et al., 2017; Guo et al., 2017; Yao et al.,

2017; Palanisamy et al., 2017; Wang et al., 2017; Gao et al., 2018; Hwang et al., 2018; Risthaus et al., 2018). It is

concluded that the cycling lifespan can be dramatically optimized after surface modification.

To demonstrate the effects of the surface modification in a practical SIB, the full-cell system was assembled

by coupling C-NMNM as the cathode material and hard carbon as the anode material (Figure S8). The

detailed experimental information is similar to our previous work (Jianqiu, Wen-Bin et al. 2018). As shown

in Figure 3A, the full-cell systemwas activated and operated at 0.1 C in the voltage window of 1.01–4.19 V. It

had a high reversible efficiency, up to 70.6%, which means that there is an enormous store of cyclable
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sodium ions in the full-cell system after SEI formation on the anode. The full cells exhibited good cycling

performance at 1 C over 200 cycles and had coulombic efficiency beyond 99% (Figure 3C). Moreover,

the energy density of the full cell was as high as 210 Wh kg�1, calculated on the basis of the total cathode

and anode mass, which was roughly consistent with the result for a P-NMNM//hard carbon system (Fig-

ure 3B) (Guo et al., 2015a, 2015b; Li et al., 2015; Ren et al., 2016; Zhang et al., 2016b; Aragón et al.,

2017; Yin et al., 2017; Yuan et al., 2017; Deng et al., 2018a, 2018b; Liu et al., 2018). To further investigate

the kinetics of the electrode materials, the apparent activation energies (Figure 3D) of the two electrodes

were calculated from the electrochemical impedance spectra, as shown in Figure S9 (Luo et al., 2014), which

shows the Nyquist curves of the electrodes at a cathodic potential of 2.55 V versus Na/Na+. Figure 3E shows

the Arrhenius plots of log i0 as a function of 1,000T�1. The reaction associated with 2.55 V is mainly

Figure 2. Electrochemical Performance of the P-NMNM and C-NMNM Electrodes

(A and B) The charge/discharge profiles (A) at the 0.5 C rate and (B) at the 1 C rate.

(C and D) Long-term cycle life and coulombic efficiency for 400 cycles at 0.5 C (C) and 1 C (D).

(E and F) Comparison of the capacity retention of C-NMNM electrodes against other cathode materials (E) at the 0.5 C

rate11, 18, 23-27, and (F) at the 1 C rate5, 7-9 28, 29.

See also Figures S6 and S7.
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Figure 3. Electrochemical Performance in Full-Cell and Activation Energy after Surface Modification

(A) Charge and discharge curves for the full cell at different current densities.

(B) Comparison of the energy density of our full cell with reported sodium-ion full-cell systems.

(C) Cycling performance at 0.5 C of the full-cell system coupling C-NMNM as the cathode material and pristine hard

carbon as the anode material.

(D) Schematic illustration of the activation energy of sodium ion transfer before and after the AlPO4 coating was applied

on the P-NMNM.

(E) Arrhenius plots showing the activation energy of the first discharge processes at a cathodic potential of 2.55 V versus

Na/Na+.

See also Figures S8 and S9.
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contributed by the sodium ion insertion process into the cathode component. The activation energies (Ea =

-RK ln 10, where K = the slope of the fitting line) in Figure 3E of P-NMNM and C-NMNM were calculated to

be 50.4 and 36.2 kJ mol�1, respectively. Therefore, the excellent performance of C-NMNM, especially the

cycling performance, can bemainly attributed to the lower ion apparent activation energy. In particular, the

surface modification was designed to avoid destroying the crystal structure that gives rise to high ionic

conductivity.

Mechanism of Enhanced Stability of the C-NMNM

To monitor the phase transformation and interface in detail, in situ synchrotron technique and HAADF-

STEM were employed on the materials after 200 cycles in the full-cell system as shown in Figure 4 and

S10. In the case of P-NMNM, there is an obvious phase transformation between different structures, and

some TM ions near the surface of the particle migrate into the Na layer, forming a spinel phase with

Na+ occupying the tetrahedral sites, as shown in Figures 4A, 4B, and S11. The corresponding fast Fourier

transform (FFT) results further confirm the change from the bulk (red) to the edge (blue) area with different

lattice fringes and electronic diffraction spots, as shown in Figures 4B–4D. The sodium and other TM

ordering is mainly preserved in the P-NMNM bulk after long cycling, whereas a fraction of cations migrate

between the octahedral sites to the tetrahedral interstices in the surface. All the information obtained from

C-NMNM, however, was completely different, as shown in Figures 4E–4H. The degree of phase

Figure 4. The Structure Evolution of P-NMNM and C-NMNM after Long-Term Cycle

(A) In situ synchrotron XRD patterns of P-NMNM during the 201st cycle.

(B) The detailed HAADF-STEM image of P-NMNMparticle after 200 cycles (C) The corresponding Fast Fourier transform (FFT) of the edge area of the particle

(the blue box in B). (D) The corresponding Fast Fourier transform (FFT) of the bulk area of the particle (the red box in B).

(E) In situ synchrotron XRD patterns of C-NMNM during the 201st cycle.

(F) The detailed HAADF-STEM image of C-NMNM particle after 200 cycles. (G) The corresponding Fast Fourier transform (FFT) of the edge area of the

particle (the red box in F). (H) The corresponding Fast Fourier transform (FFT) of the bulk area of the particle (the grey box in F).

See also Figures S10 and S11.
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transformation from the in situ synchrotron results was decreased after surface modification, whereas the

surface crystal structure of C-NMNM after 200 cycles could still maintain the layered structure, which is

consistent with the pristine state. The corresponding FFT from the bulk (red) to the edge (blue) area in Fig-

ure 4F shows the same pattern. All the above comparative results indicate that thin-layer AlPO4 surface

modification can efficiently protect the surface crystal structure during long-term cycling to alleviate the

degree of phase transformation. This improvement is beneficial for cycling lifespan enhancement as well.

To further explore the valence states, the electronic states for oxygen and TMs were collected by STEM-

EELS at different positions from the bulk to the surface, as shown in the atomic-resolution STEM image in

Figures 5A–5F. Each spectrum was averaged from an area with five rows of atomic columns to improve

signal-to-noise ratios. In the case of P-NMNM, as shown in Figures 5A–5C, the pre-peak starts to decrease

from the bulk to the surface. The content of O is lower in the surface than in the bulk, implying that oxygen

vacancies have been formed within 5–10 nm of the surface. The reduced ratio of the O-K-edge pre-peak in-

tensities to themain peak and the gradually decreasedpre-peak indicates a change in the local oxygen envi-

ronment, especially from the oxygen vacancies formed on the surface. It was claimed that oxygen was being

released from the lattice and reactingwith the electrolyte solvents throughexothermic reactions (Qiao et al.,

2015; Ma et al., 2017; Dai et al., 2018). In Figure 5B, the Mn L3 edge at the surface represents a lower energy

loss compared with that of the bulk, which indicates a decrease in the oxidation state at the surface. Reduc-

tion of the transition-metal ions occurs together with migration of the transition-metal ions from the metal

layer to the sodium interlayer through empty tetrahedral sites, thus causing a structural transformation from

layered two-dimensional to spinel three-dimensional (Gao et al., 2019; Piao et al., 2019). A higher oxidation

state in the bulk is also indicated by the higher Opre-peak intensity observed in the bulk, whereas the spinel

oxidation state is indicated in the surface area. As shown in Figure 5D–5F, unlike the case of P-NMNM, it is

observed that the reduced O pre-peak can be even seen at 15 nm for the C-NMNM sample, and there is no

obvious change. The intensities of the O pre-peak and the main peak show no obvious change as well,

implying that the active material is free from electrolyte corrosion and keeps its structure intact under the

protection of the AlPO4 (House et al., 2019; Kong et al., 2019). The Mn peak in the EELS spectrum of C-

NMNM stays the same, showing that Mn ions are barely reduced during cycling. The intensity ratio of Mn

L3/L2 in Figures 5C and 5F provides information on the Mn valence (oxidation) (Cho et al., 2015; Liu et al.,

2015). The trends for cycled C-NMNM show that the oxidation state of Mn stays constant over the whole

selected area, whereas the ratio for cycled P-NMNM is higher in the surface area. This indicates a lower

oxidation state of Mn (Mn3+ and Mn2+) on the P-NMNM particle surface. These ions are easily dissolved

in the electrolyte, leading to the collapse of the layered structure and the loss of active material. XPS was

also used to examine surface changes at the cathode as a result of electrochemical cycling. Comparative

studies of Mn 2p spectra before and after cycling confirm the Mn oxidation state in the surface of C-

NMNM, as shown in Figure S12 (Zhan et al., 2013; Qiao et al., 2015; Banerjee et al., 2017b). To investigate

the migration behavior of dissolved ions, scanning electron microscopy-EDS mapping of the hard carbon

anode and the separator were conducted, as shown in Figure 5G, 5H, and S13, at a low magnification of

40 mm. In the case of the cell fabricated with C-NMNM, the Mn element was only slightly dissolved in the

electrolyte, and there was no signal indicating deposition on the surface of the hard carbon anode, whereas

there is a strongMn signal on the hard carbon surface in the P-NMNM//hard carbon system.Meanwhile, the

Mg element is also present in the electrolyte, which can be detected on the separator (Figure S14) (Xiao

et al., 2013; Zhan et al., 2013; Piao et al., 2018; Zhan et al., 2018). All of this unexpected behavior will pollute

the battery system. Taking the internal resistance as an example, as shown in Figure S15, on comparing with

the results for C-NMNM, the charge transfer resistance (Rct) of P-NMNM shows an increasing trend during

cycling. Based on the above results, it is concluded that this surface engineering technique can efficiently

stabilize the cathode surface to suppress the DMDprocess. Meanwhile, it can protect the whole battery sys-

tem from unexpected contamination so as to increase the cycling lifespan.

In conclusion, the cathode TM elements near the surface dissolve, migrate, and are thus deposited on the

hard carbon anode during long-term cycling. This not only can damage the surface crystal structure of the

cathode material but also increases the cell resistance by contamination of the SEI layer during long-term

cycling. In this work, surface engineering, by coating with a stable AlPO4 thin layer, can efficiently suppress

the DMD process by stabilizing the interface structure between the cathode and the electrolyte, particu-

larly in a full-cell system. With the benefits of this surface protection engineering, the cathode can show

95% capacity retention after 400 cycles at 1 C. When coupled with hard carbon as anode, the full battery

system can maintain 78% of the original value after 200 cycles at 1 C. This technique will lead to advanced

250 iScience 19, 244–254, September 27, 2019



Figure 5. Composition of Surface versus Bulk for P-NMNM (Top Row and G), and C-NMNM (Second Row from the Top and H)

(A and D) STEM images of (A) P-NMNM and (D) C-NMNM.

Series of EELS spectra from the surface to the bulk of P-NMNM (B) and C-NMNM (E), corresponding to the HAADF images in (A) and (D).
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SIBs that can meet the requirements for large-scale renewable energy storage, as well as inspire the devel-

opment of a wide range of different electrode materials.

Limitations of the Study

Although the coating layer can protect hard carbon anode, other types are not tested in this work, such as

MoS2. Meanwhile, the cathode material in this work should be air and water stable.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.07.029.
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Transparent methods 

Synthetic procedures and characterization 

Preparation of cathode materials P-NMNM and C-NMNM 

Na[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2 was synthesized as in our previous report.6 It was the 

dispersed into pure ethanol to form solution A. Certain amounts of Al(NO3)3·9H2O were dispersed 

in solution A under vigorous stirring. A given mass of H3PO4 was added dropwise to the above 

solution under vigorous stirring for 2 h. The resulting mixture was purified in a rotary evaporator 

and calcined at 400 oC. 

Material characterization 

XRD measurements were performed to investigate the crystal structure using a PLXcel 3D X-ray 

diffractometer with a non-monochromated Cu Kα X-ray source. The morphology of the samples 

was examined using field emission scanning electron microscopy (FE-SEM; JEOL JSM-7500). 

STEM, EELS, and EDS were performed using a 200 kV JEOL 2011 instrument. Synchrotron 

powder diffraction data were collected at the Australian Synchrotron beamline with a wavelength 

(λ) of 0.688 Å, calibrated with the standard reference material (National Institute of Standards and 



Technology (NIST) LaB6 660b). Schematic representations of the data were obtained by VESTA 

software. 

Electrochemical characterization 

The electrochemical properties were evaluated by using R2032-type coin cells assembled in an 

argon-filled glove box. Positive electrodes were prepared by mixing 80 wt. % active materials, 10 

wt. % acetylene black, and 10 wt. % polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone 

and coating the slurry on Al foil. The electrodes were dried at 120 °C in vacuum. The mass loading 

of the electrodes was in the range of 3.0 – 4.5 mg cm-2. Hard carbon electrodes were obtained with 

90 % hard carbon, 5 % acetylene black, and 5 % carboxymethyl cellulose (CMC). The electrolyte 

was 1 M NaClO4 dissolved in ethylene carbonate/diethyl carbonate (EC/ DEC, 1:1 by volume) 

with 5 vol. % fluoroethylene carbonate as an electrolyte additive. Na metal and hard carbon 

electrodes were the negative electrodes for the half cell and full cell, respectively. In the case of 

the full cell, the current density is based on the mass of cathode material. The weight ratio of the 

two electrodes was balanced with reference to their corresponding reversible capacities. The full 

cell system was activated by operating it at 0.1 C in the voltage window of 1.0 – 4.19 V.6 In the 

following test, the voltage window was 1.0 – 4.0 V. A Celgard 2400 membrane was used as the 

separator. Galvanostatic charge/discharge tests were performed on a LAND multichannel battery 

testing system (CT2001A, Wuhan Jinnuo Electronics Co., Ltd.). CV curves were acquired with an 

electrochemical workstation (Bio-logic EC Lab VMP3).  

 

 

 

 

 



Supplemental Figures 

  
Figure S1. PXRD patterns of C-NMNM, Related to Figures 1



 

 
Figure S2. (a-h) Different element distributions from HAADF-STEM-EDS mapping; (i, j) 

phase distributions (insets) and EDS spectra of core (top) and shell (bottom) of C-NMNM, 

Related to Figures 1 

 

 

 

 



 
 

Figure S3. Different element distributions in the edge area, Related to Figures 1 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S4. Composition, structure, and crystalline phase of the C-NMNM samples. (a, b) 

HAADF and annular bright field (ABF)-STEM images show the interface of the coating 

layer in the same local region. (c) HAADF-STEM image shows the crystal structure of the 

cathode material after modification; (d, e) Intensity profiles of each bright line in (c). (f) 

EELS image of the outer layer of the particle, with selected area as inset image; (g, h) 

HAADF-STEM images with regions indicated for the corresponding EELS data shown in (i), 

Related to Figures 1 

 

 



 
Figure S5. XPS results for before and after coating: Al 2p (a), P 2p (b), and Mn 2p (c), Related 
to Figures 1 



 

 
Figure S6. The charge and discharge profiles of pure AlPO4, Related to Figures 2 

 



 
Figure S7. Cyclic voltammetry (CV) curves of C-NMNM electrode, Related to Figures 2 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S8. The electrochemical performance of Hard carbon. (a) The initial two cycles of 

charge and discharge. (b) Rate performance. (c) cycle performance at 1C, Related to Figures 

3 

 

 

 

 

 



 

 
Figure S9. The electrochemical impedance spectra of P-NMNM and C-NMNM electrodes in 

half cells at different temperatures: (a) P-NMNM and (b) C-NMNM, Related to Figures 3 

  



 

 

 
Figure S10. In Situ PXRD Characterization for P-NMNM (a) and C-NMNM(b) electrode 

during the Charge and Discharge Process. (c, d) The corresponding contour plot of a, b, 

Related to Figures 4 

  



 
 

Figure S11. Detailed HAADF-STEM information on P-NMNM after 200 cycles, showing the 

interface between the different phases (a), P-NMNM (b) and spinel phase with Na occupying 

the tetrahedral sites (c), Related to Figures 4 

  



 

 

 
Figure S12. Valence states of the C-NMNM before and after 400 cycles. XPS spectra of Al 

2p (a), P 2p (b), and Mn 2p (c), Related to Figures 5 



 

 
Figure S13. SEM-EDS mapping of hard carbon anode coupled with C-NMNM and P-
NMNM, respectively, Related to Figures 5 



 
Figure S14. SEM-EDS mapping of separator coupled with C-NMNM and P-NMNM, 
respectively, Related to Figures 5 



  
Figure S15. EIS plots of P-NMNM and C-NMNM before and after 200 cycles in full battery 
system, with the inset showing an enlargement of the indicated range, Related to Figures 5 
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