2,022 research outputs found

    Full counting statistics of renormalized dynamics in open quantum transport system

    Full text link
    The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness.Comment: 9 pages, 5 figure

    Incorporating Visual Experts to Resolve the Information Loss in Multimodal Large Language Models

    Full text link
    Multimodal Large Language Models (MLLMs) are experiencing rapid growth, yielding a plethora of noteworthy contributions in recent months. The prevailing trend involves adopting data-driven methodologies, wherein diverse instruction-following datasets are collected. However, a prevailing challenge persists in these approaches, specifically in relation to the limited visual perception ability, as CLIP-like encoders employed for extracting visual information from inputs. Though these encoders are pre-trained on billions of image-text pairs, they still grapple with the information loss dilemma, given that textual captions only partially capture the contents depicted in images. To address this limitation, this paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism. Specifically, we introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline, aiming to provide a more comprehensive and accurate summarization of visual inputs. Extensive experiments have evaluated its effectiveness of advancing MLLMs, showcasing improved visual perception achieved through the integration of visual experts

    Function annotation of hepatic retinoid x receptor α based on genome-wide DNA binding and transcriptome profiling.

    Get PDF
    BackgroundRetinoid x receptor α (RXRα) is abundantly expressed in the liver and is essential for the function of other nuclear receptors. Using chromatin immunoprecipitation sequencing and mRNA profiling data generated from wild type and RXRα-null mouse livers, the current study identifies the bona-fide hepatic RXRα targets and biological pathways. In addition, based on binding and motif analysis, the molecular mechanism by which RXRα regulates hepatic genes is elucidated in a high-throughput manner.Principal findingsClose to 80% of hepatic expressed genes were bound by RXRα, while 16% were expressed in an RXRα-dependent manner. Motif analysis predicted direct repeat with a spacer of one nucleotide as the most prevalent RXRα binding site. Many of the 500 strongest binding motifs overlapped with the binding motif of specific protein 1. Biological functional analysis of RXRα-dependent genes revealed that hepatic RXRα deficiency mainly resulted in up-regulation of steroid and cholesterol biosynthesis-related genes and down-regulation of translation- as well as anti-apoptosis-related genes. Furthermore, RXRα bound to many genes that encode nuclear receptors and their cofactors suggesting the central role of RXRα in regulating nuclear receptor-mediated pathways.ConclusionsThis study establishes the relationship between RXRα DNA binding and hepatic gene expression. RXRα binds extensively to the mouse genome. However, DNA binding does not necessarily affect the basal mRNA level. In addition to metabolism, RXRα dictates the expression of genes that regulate RNA processing, translation, and protein folding illustrating the novel roles of hepatic RXRα in post-transcriptional regulation

    Self-Healing Control Framework Against Actuator Fault of Single-Rotor Unmanned Helicopters

    Get PDF
    Unmanned helicopters (UHs) develop quickly because of their ability to hover and low speed flight. Facing different work conditions, UHs require the ability to safely operate under both external environment constraints, such as obstacles, and their own dynamic limits, especially after faults occurrence. To guarantee the postfault UH system safety and maximum ability, a self‐healing control (SHC) framework is presented in this chapter which is composed of fault detection and diagnosis (FDD), fault‐tolerant control (FTC), trajectory (re‐)planning, and evaluation strategy. More specifically, actuator faults and saturation constraints are considered at the same time. Because of the existence of actuator constraints, usable actuator efficiency would be reduced after actuator fault occurrence. Thus, the performance of the postfault UH system should be evaluated to judge whether the original trajectory and reference is reachable, and the SHC would plan a new trajectory to guarantee the safety of the postfault system under environment constraints. At last, the effectiveness of proposed SHC framework is illustrated by numerical simulations

    Tunable Sample-wide Electronic Kagome Lattice in Low-angle Twisted Bilayer Graphene

    Full text link
    Overlaying two graphene layers with a small twist angle can create a moire superlattice to realize exotic phenomena that are entirely absent in graphene monolayer. A representative example is the predicted formation of localized pseudo-Landau levels (PLLs) with Kagome lattice in tiny-angle twisted bilayer graphene (TBG) with theta < 0.3 deg when the graphene layers are subjected to different electrostatic potentials. However, this was shown only for the model of rigidly rotated TBG which is not realized in reality due to an interfacial structural reconstruction. It is believed that the interfacial structural reconstruction strongly inhibits the formation of the PLLs. Here, we systematically study electronic properties of the TBG with 0.075 deg < theta < 1.2 deg and demonstrate, unexpectedly, that the PLLs are quite robust for all the studied TBG. The structural reconstruction suppresses the formation of the emergent Kagome lattice in the tiny-angle TBG. However, for the TBG around magic angle, the sample-wide electronic Kagome lattices with tunable lattice constants are directly imaged by using scanning tunneling microscope. Our observations open a new direction to explore exotic correlated phases in moire systems.Comment: 4 figures in main text. PRL in pres

    Trend-Based SAC Beam Control Method with Zero-Shot in Superconducting Linear Accelerator

    Full text link
    The superconducting linear accelerator is a highly flexiable facility for modern scientific discoveries, necessitating weekly reconfiguration and tuning. Accordingly, minimizing setup time proves essential in affording users with ample experimental time. We propose a trend-based soft actor-critic(TBSAC) beam control method with strong robustness, allowing the agents to be trained in a simulated environment and applied to the real accelerator directly with zero-shot. To validate the effectiveness of our method, two different typical beam control tasks were performed on China Accelerator Facility for Superheavy Elements (CAFe II) and a light particle injector(LPI) respectively. The orbit correction tasks were performed in three cryomodules in CAFe II seperately, the time required for tuning has been reduced to one-tenth of that needed by human experts, and the RMS values of the corrected orbit were all less than 1mm. The other transmission efficiency optimization task was conducted in the LPI, our agent successfully optimized the transmission efficiency of radio-frequency quadrupole(RFQ) to over 85%85\% within 2 minutes. The outcomes of these two experiments offer substantiation that our proposed TBSAC approach can efficiently and effectively accomplish beam commissioning tasks while upholding the same standard as skilled human experts. As such, our method exhibits potential for future applications in other accelerator commissioning fields

    CSCNET: Class-Specified Cascaded Network for Compositional Zero-Shot Learning

    Full text link
    Attribute and object (A-O) disentanglement is a fundamental and critical problem for Compositional Zero-shot Learning (CZSL), whose aim is to recognize novel A-O compositions based on foregone knowledge. Existing methods based on disentangled representation learning lose sight of the contextual dependency between the A-O primitive pairs. Inspired by this, we propose a novel A-O disentangled framework for CZSL, namely Class-specified Cascaded Network (CSCNet). The key insight is to firstly classify one primitive and then specifies the predicted class as a priori for guiding another primitive recognition in a cascaded fashion. To this end, CSCNet constructs Attribute-to-Object and Object-to-Attribute cascaded branches, in addition to a composition branch modeling the two primitives as a whole. Notably, we devise a parametric classifier (ParamCls) to improve the matching between visual and semantic embeddings. By improving the A-O disentanglement, our framework achieves superior results than previous competitive methods.Comment: ICASSP 202
    corecore