11,772 research outputs found

    Market timing with aggregate accruals

    Get PDF
    We propose a market-timing strategy that aims to exploit aggregate accruals' return forecasting power. Using several performance measures of the aggregate accruals-based market-timing strategy, such as excess portfolio return, Sharpe ratio, and Jensen's alpha, we find robust evidence that, relative to the passive investment strategy of buying and holding the stock market, the market-timing strategy delivers superior performance that is both statistically and economically significant. Specifically, on average, the market-timing strategy beats the SP500 index by 6 to 22 percentage points (annualized) after controlling for transaction costs over the 1980-2004 period.© 2009 Palgrave Macmillan.postprin

    The Sarbanes-Oxley act and corporate investment: A structural assessment

    Get PDF
    We assess the impact of the Sarbanes-Oxley Act of 2002 on corporate investment in an investment Euler equation framework. We allow a dummy for the passage of the Act to affect the rate at which managers discount future investment payoffs. Using generalized method of moments estimators, we find that the rate U.S. firm managers apply to discount investment projects rises significantly after 2002, while the discount rate for U.K. firms remains unchanged. The effects of the legislation on corporate investment are asymmetric, and are much more significant among relatively small firms. We also find that well-governed firms, firms with a credit rating, and accelerated filers of Section 404 of the Act have become more cautious about investment. © 2010 Elsevier B.V.postprin

    A General Information Theoretical Proof for the Second Law of Thermodynamics

    Full text link
    We show that the conservation and the non-additivity of the information, together with the additivity of the entropy make the entropy increase in an isolated system. The collapse of the entangled quantum state offers an example of the information non-additivity. Nevertheless, the later is also true in other fields, in which the interaction information is important. Examples are classical statistical mechanics, social statistics and financial processes. The second law of thermodynamics is thus proven in its most general form. It is exactly true, not only in quantum and classical physics but also in other processes, in which the information is conservative and non-additive.Comment: 4 page

    Levinson's theorem for the Schr\"{o}dinger equation in two dimensions

    Full text link
    Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically symmetric potential in two dimensions is re-established by the Sturm-Liouville theorem. The critical case, where the Schr\"{o}dinger equation has a finite zero-energy solution, is analyzed in detail. It is shown that, in comparison with Levinson's theorem in non-critical case, the half bound state for PP wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of PP wave at zero energy to increase an additional π\pi.Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email: [email protected], [email protected]

    Polaronic transport induced by competing interfacial magnetic order in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} heterostructure

    Full text link
    Using ultrafast optical spectroscopy, we show that polaronic behavior associated with interfacial antiferromagnetic order is likely the origin of tunable magnetotransport upon switching the ferroelectric polarity in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} (LCMO/BFO) heterostructure. This is revealed through the difference in dynamic spectral weight transfer between LCMO and LCMO/BFO at low temperatures, which indicates that transport in LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases in relatively high magnetic fields due to the increased spin alignment, while no discernible change is found in the LCMO film at low temperatures. These results thus shed new light on the intrinsic mechanisms governing magnetoelectric coupling in this heterostructure, potentially offering a new route to enhancing multiferroic functionality

    Candidate MKiD nucleus 106Rh in triaxial relativistic mean-field approach with time-odd fields

    Full text link
    The configuration-fixed constrained triaxial relativistic mean-field approach is extended by including time-odd fields and applied to study the candidate multiple chiral doublets (MKiD) nucleus 106Rh. The energy contribution from time-odd fields and microscopical evaluation of center-of-mass correction as well as the modification of triaxial deformation parameters beta, gamma due to the time-odd fields are investigated. The contributions of the time-odd fields to the total energy are 0.1-0.3 MeV and they modify slightly the gamma values. However, the previously predicted multiple chiral doublets still exist.Comment: 9 pages, 3 figures, accepted for publication as a Brief Report in Physical Review

    The Relativistic Levinson Theorem in Two Dimensions

    Full text link
    In the light of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation in two dimensions is established as a relation between the total number njn_{j} of the bound states and the sum of the phase shifts ηj(±M)\eta_{j}(\pm M) of the scattering states with the angular momentum jj: ηj(M)+ηj(M)                                   ˜                                                          \eta_{j}(M)+\eta_{j}(-M)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    ={(nj+1)πwhen a half bound state occurs at E=M  and  j=3/2 or 1/2(nj+1)πwhen a half bound state occurs at E=M  and  j=1/2 or 3/2njπ the rest cases.~~~=\left\{\begin{array}{ll} (n_{j}+1)\pi &{\rm when~a~half~bound~state~occurs~at}~E=M ~~{\rm and}~~ j=3/2~{\rm or}~-1/2\\ (n_{j}+1)\pi &{\rm when~a~half~bound~state~occurs~at}~E=-M~~{\rm and}~~ j=1/2~{\rm or}~-3/2\\ n_{j}\pi~&{\rm the~rest~cases} . \end{array} \right. \noindent The critical case, where the Dirac equation has a finite zero-momentum solution, is analyzed in detail. A zero-momentum solution is called a half bound state if its wave function is finite but does not decay fast enough at infinity to be square integrable.Comment: Latex 14 pages, no figure, submitted to Phys.Rev.A; Email: [email protected], [email protected]

    Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy

    Full text link
    Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic/ferroelectric and ferromagnetic orders in multiferroic TbMnO3 films through their time domain signatures. Our observations are explained by a theoretical model describing the coupling between reservoirs with different magnetic properties. These results can guide researchers in creating new kinds of multiferroic materials that combine coupled ferromagnetic, antiferromagnetic and ferroelectric properties in one compound.Comment: Accepted by Appl. Phys. let

    Thermodynamic Properties of Supported and Embedded Metallic Nanocrystals: Gold on/in SiO2

    Get PDF
    We report on the calculations of the cohesive energy, melting temperature and vacancy formation energy for Au nanocrystals with different size supported on and embedded in SiO2. The calculations are performed crossing our previous data on the surface free energy of the supported and embedded nanocrystals with the theoretical surface-area-difference model developed by W. H. Qi for the description of the size-dependent thermodynamics properties of low-dimensional solid-state systems. Such calculations are employed as a function of the nanocrystals size and surface energy. For nanocrystals supported on SiO2, as results of the calculations, we obtain, for a fixed nanocrystal size, an almost constant cohesive energy, melting temperature and vacancy formation energy as a function of their surface energy; instead, for those embedded in SiO2, they decreases when the nanocrystal surface free energy increases. Furthermore, the cohesive energy, melting temperature and vacancy formation energy increase when the nanocrystal size increases: for the nanocrystals on SiO2, they tend to the values of the bulk Au; for the nanocrystals in SiO2 in correspondence to sufficiently small values of their surface energy, they are greater than the bulk values. In the case of the melting temperature, this phenomenon corresponds to the experimentally well-known superheating process
    corecore