24,778 research outputs found

    Doublet bands in 126^{126}Cs in the triaxial rotor model coupled with two quasiparticles

    Get PDF
    The positive parity doublet bands based on the πh11/2⊗νh11/2\pi h_{11/2}\otimes\nu h_{11/2} configuration in 126^{126}Cs have been investigated in the two quasi-particles coupled with a triaxial rotor model. The energy spectra E(I)E(I), energy staggering parameter S(I)=[E(I)−E(I−1)]/2IS(I)=[E(I)-E(I-1)]/2I, B(M1)B(M1) and B(E2)B(E2) values, intraband B(M1)/B(E2)B(M1)/B(E2) ratios, B(M1)in/B(M1)outB(M1)_{\textrm{in}}/B(M1)_{\textrm{out}} ratios, and orientation of the angular momentum for the rotor as well as the valence proton and neutron are calculated. After including the pairing correlation, good agreement has been obtained between the calculated results and the data available, which supports the interpretation of this positive parity doublet bands as chiral bands.Comment: Phys.Rev.C (accepted

    Monotonicity results and bounds for the inverse hyperbolic sine

    Get PDF
    In this note, we present monotonicity results of a function involving to the inverse hyperbolic sine. From these, we derive some inequalities for bounding the inverse hyperbolic sine.Comment: 3 page

    Chiral geometry of higher excited bands in triaxial nuclei with particle-hole configuration

    Full text link
    The lowest six rotational bands have been studied in the particle-rotor model with the particle-hole configuration πh11/21⊗νh11/2−1\pi h^1_{11/2}\otimes\nu h^{-1}_{11/2} and different triaxiality parameter γ\gamma. Both constant and spin-dependent variable moments of inertial (CMI and VMI) are introduced. The energy spectra, electromagnetic transition probabilities, angular momentum components and KK-distribution have been examined. It is shown that, besides the band 1 and band 2, the predicted band 3 and band 4 in the calculations of both CMI and VMI for atomic nuclei with γ=30∘\gamma=30^\circ could be interpreted as chiral doublet bands.Comment: 4 pages, 4 figure

    Candidate MKiD nucleus 106Rh in triaxial relativistic mean-field approach with time-odd fields

    Full text link
    The configuration-fixed constrained triaxial relativistic mean-field approach is extended by including time-odd fields and applied to study the candidate multiple chiral doublets (MKiD) nucleus 106Rh. The energy contribution from time-odd fields and microscopical evaluation of center-of-mass correction as well as the modification of triaxial deformation parameters beta, gamma due to the time-odd fields are investigated. The contributions of the time-odd fields to the total energy are 0.1-0.3 MeV and they modify slightly the gamma values. However, the previously predicted multiple chiral doublets still exist.Comment: 9 pages, 3 figures, accepted for publication as a Brief Report in Physical Review

    Concise sharpening and generalizations of Shafer's inequality for the arc sine function

    Full text link
    In this paper, by a concise and elementary approach, we sharpen and generalize Shafer's inequality for the arc sine function, and some known results are extended and generalized.Comment: 5 page

    Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor

    Get PDF
    A particle rotor model (PRM) with a quasi-proton and a quasi-neutron coupled with a triaxial rotor is developed and applied to study chiral doublet bands with configurations of a h11/2h_{11/2} proton and a h11/2h_{11/2} quasi-neutron. With pairing treated by the BCS approximation, the present quasi-particle PRM is aimed at simulating one proton and many neutron holes coupled with a triaxial rotor. After a detailed analysis of the angular momentum orientations, energy separation between the partner bands, and behavior of electromagnetic transitions, for the first time we find aplanar rotation or equivalently chiral geometry beyond the usual one proton and one neutron hole coupled with a triaxial rotor.Comment: 25 pages, 10 figures, accepted for publication in Physical Review

    Experimental demonstration of phase-remapping attack in a practical quantum key distribution system

    Full text link
    Unconditional security proofs of various quantum key distribution (QKD) protocols are built on idealized assumptions. One key assumption is: the sender (Alice) can prepare the required quantum states without errors. However, such an assumption may be violated in a practical QKD system. In this paper, we experimentally demonstrate a technically feasible "intercept-and-resend" attack that exploits such a security loophole in a commercial "plug & play" QKD system. The resulting quantum bit error rate is 19.7%, which is below the proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314, 2007) proposed by our group.Comment: 16 pages, 6 figure
    • …
    corecore