11,211 research outputs found
EigenGP: Gaussian Process Models with Adaptive Eigenfunctions
Gaussian processes (GPs) provide a nonparametric representation of functions.
However, classical GP inference suffers from high computational cost for big
data. In this paper, we propose a new Bayesian approach, EigenGP, that learns
both basis dictionary elements--eigenfunctions of a GP prior--and prior
precisions in a sparse finite model. It is well known that, among all
orthogonal basis functions, eigenfunctions can provide the most compact
representation. Unlike other sparse Bayesian finite models where the basis
function has a fixed form, our eigenfunctions live in a reproducing kernel
Hilbert space as a finite linear combination of kernel functions. We learn the
dictionary elements--eigenfunctions--and the prior precisions over these
elements as well as all the other hyperparameters from data by maximizing the
model marginal likelihood. We explore computational linear algebra to simplify
the gradient computation significantly. Our experimental results demonstrate
improved predictive performance of EigenGP over alternative sparse GP methods
as well as relevance vector machine.Comment: Accepted by IJCAI 201
Theories and Varying Fine Structure Constant
In analogy to theory, recently a new modified gravity theory, namely
the so-called theory, has been proposed to drive the current accelerated
expansion without invoking dark energy. In the present work, by extending
Bisabr's idea, we try to constrain theories with the varying fine
structure "constant", . We find that the constraints
on theories from the observational data are very
severe. In fact, they make theories almost indistinguishable from
CDM model.Comment: 12 pages, 4 figures, 1 table, revtex4; v2: discussions added, Phys.
Lett. B in press; v3: published versio
Energy-storage properties and electrocaloric effects of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films
1-µm-Pb(1-3x/2)LaxZr0.85Ti0.15O3 (PLZT) antiferroelectric (AFE) thick films with x = 0.08,
0.10, 0.12, and 0.14 were deposited on LaNiO3/Si (100) substrates by a sol-gel method. The
dielectric properties, energy-storage performance, electrocaloric effect, and leakage current behavior
were investigated in detail. With increasing La content, dielectric constant and saturated polarizations
of the thick films were gradually decreased. A maximum recoverable energy-storage density of 38
J/cm3 and efficiency of 71% were achieved in the thick films with x = 0.12 at room temperature.
Moreover, a large reversible adiabatic temperature change ∆T = 25.0
o
C was presented in the thick
films with x = 0.08 at 127
o
C at 990 kV/cm. All the samples had a lower leakage current density
below 10-
6
A/cm2 at room temperature. These results indicated that the PLZT AFE thick films could
be a potential candidate for applications in high energy-storage density capacitors and cooling
devices
A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature
A 2-µm-Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 (PLZST) antiferroelectric (AFE) thick film with tetragonal structure was deposited on LaNiO3/Si (100) substrates via a sol-gel technique. The electrocaloric effect (ECE) of the PLZST thick film is investigated under the functions of external electric field and temperature. Giant ECEs (∆T = 53.8 oC and ∆S = 63.9 J·K-1·kg-1) are received at 5 oC, which is attributed to a field-induced AFE to ferroelectric (FE) phase transition. Moreover, a large ∆T of above 30 oC is remains at temperature range from 5 oC to 25 oC. The maximum electrocaloric coefficient (ξmax = 0.060 K·cm/kV) and refrigeration efficiency (COP = 18) of the film are also obtained at 5 oC. At room temperature, the values of ∆T, ∆S, COP and ξmax are 35.0 oC, 39.0 J·K-1·kg-1, 14 and 0.039 K·cm/kV at 900 kV/cm, respectively. The AFE thick films with giant ECEs are promising candidates for applications in cooling systems at room temperature
Enhanced energy-storage performance and electrocaloric effect in compositionally graded Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films
The compositionally graded multilayer Pb(1−3x/2)LaxZr0.85Ti0.15O3 (PLZT) antiferroelectric (AFE) thick films were deposited on LaNiO3/Si (100) substrates by using a sol–gel method. The effect of gradient sequence on dielectric properties, energy-storage performance, and electrocaloric effect (ECE) was investigated in detail. It is found that the compositionally graded films exhibited a significant enhancement in dielectric properties, energy-storage performance and ECE, which was, in contrast to the single-composition PLZT film, contributed by the strain and the gradient of polarization near the interfaces between the adjacent layers. A recoverable energy-storage density of 44 J/cm3 and efficiency of 71% was obtained in the up-graded PLZT AFE thick film at 1950 kV/cm. A giant reversible adiabatic temperature change of ∆T=28 °C at room temperature at 900 kV/cm was also achieved in the up-graded film. Moreover, all the thick films displayed a small leakage current density below 10−6 A/cm2 at room temperature. Thus, the compositionally graded PLZT AFE thick films with a large recoverable energy-storage density and a giant ECE could be a potential candidate for the applications in high energy-storage density capacitors and cooling devices
Momentum polarization: an entanglement measure of topological spin and chiral central charge
Topologically ordered states are quantum states of matter with topological
ground state degeneracy and quasi-particles carrying fractional quantum numbers
and fractional statistics. The topological spin is an
important property of a topological quasi-particle, which is the Berry phase
obtained in the adiabatic self-rotation of the quasi-particle by . For
chiral topological states with robust chiral edge states, another fundamental
topological property is the edge state chiral central charge . In this paper
we propose a new approach to compute the topological spin and chiral central
charge in lattice models by defining a new quantity named as the momentum
polarization. Momentum polarization is defined on the cylinder geometry as a
universal subleading term in the average value of a "partial translation
operator". We show that the momentum polarization is a quantum entanglement
property which can be computed from the reduced density matrix, and our
analytic derivation based on edge conformal field theory shows that the
momentum polarization measures the combination of
topological spin and central charge. Numerical results are obtained for two
example systems, the non-Abelian phase of the honeycomb lattice Kitaev model,
and the Laughlin state of a fractional Chern insulator described by a
variational Monte Carlo wavefunction. The numerical results verifies the
analytic formula with high accuracy, and further suggests that this result
remains robust even when the edge states cannot be described by a conformal
field theory. Our result provides a new efficient approach to characterize and
identify topological states of matter from finite size numerics.Comment: 13 pages, 8 figure
- …