27,619 research outputs found
Galaxy growth in the concordance CDM cosmology
We use galaxy and dark halo data from the public database for the Millennium
Simulation to study the growth of galaxies in the De Lucia et al. (2006) model
for galaxy formation. Previous work has shown this model to reproduce many
aspects of the systematic properties and the clustering of real galaxies, both
in the nearby universe and at high redshift. It assumes the stellar masses of
galaxies to increase through three processes, major mergers, the accretion of
smaller satellite systems, and star formation. We show the relative importance
of these three modes to be a strong function of stellar mass and of redshift.
Galaxy growth through major mergers depends strongly on stellar mass, but only
weakly on redshift. Except for massive systems, minor mergers contribute more
to galaxy growth than major mergers at all redshifts and at all stellar masses.
For galaxies significantly less massive than the Milky Way, star formation
dominates the growth at all epochs. For galaxies significantly more massive
than the Milky Way, growth through mergers is the dominant process at all
epochs. At a stellar mass of , star formation dominates
at and mergers at later times. At every stellar mass, the growth rates
through star formation increase rapidly with increasing redshift. Specific star
formation rates are a decreasing function of stellar mass not only at but
also at all higher redshifts. For comparison, we carry out a similar analysis
of the growth of dark matter halos. In contrast to the galaxies, growth rates
depend strongly on redshift, but only weakly on mass. They agree qualitatively
with analytic predictions for halo growth.Comment: 11 pages, 6 figure
Uniqueness of nontrivially complete monotonicity for a class of functions involving polygamma functions
For , let
on . In the
present paper, we prove using two methods that, among all for
, only is nontrivially completely monotonic on
. Accurately, the functions and are
completely monotonic on , but the functions for
are not monotonic and does not keep the same sign on
.Comment: 9 page
Spontaneous Relaxation of a Charge Qubit under Electrical Measurement
In this work we first derive a generalized conditional master equation for
quantum measurement by a mesoscopic detector, then study the readout
characteristics of qubit measurement where a number of new features are found.
The work would in particular highlight the qubit spontaneous relaxation effect
induced by the measurement itself rather than an external thermal bath.Comment: 4 pages, 2 figures; an error in Eq.(8) is correcte
Graphene kirigami as a platform for stretchable and tunable quantum dot arrays
The quantum transport properties of a graphene kirigami similar to those
studied in recent experiments are calculated in the regime of elastic,
reversible deformations. Our results show that, at low electronic densities,
the conductance profile of such structures replicates that of a system of
coupled quantum dots, characterized by a sequence of minibands and stop-gaps.
The conductance and I-V curves have different characteristics in the distinct
stages of elastic deformation that characterize the elongation of these
structures. Notably, the effective coupling between localized states is
strongly reduced in the small elongation stage, whereas in the large elongation
regime the development of strong, localized pseudomagnetic field barriers can
reinforce the coupling and reestablish resonant tunneling across the kirigami.
This provides an interesting example of interplay between geometry and
pseudomagnetic field-induced confinement. The alternating miniband and
stop-gaps in the transmission lead to I-V characteristics with negative
differential conductance in well defined energy/doping ranges. These effects
should be stable in a realistic scenario that includes edge roughness and
Coulomb interactions, as these are expected to further promote localization of
states at low energies in narrow segments of graphene nanostructures.Comment: 10 pages, 10 figure
Generation of GHZ entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction
We propose an efficient method to generate a GHZ entangled state of n photons
in n microwave cavities (or resonators) via resonant interaction to a single
superconducting qutrit. The deployment of a qutrit, instead of a qubit, as the
coupler enables us to use resonant interactions exclusively for all
qutrit-cavity and qutrit-pulse operations. This unique approach significantly
shortens the time of operation which is advantageous to reducing the adverse
effects of qutrit decoherence and cavity decay on fidelity of the protocol.
Furthermore, the protocol involves no measurement on either the state of qutrit
or cavity photons. We also show that the protocol can be generalized to other
systems by replacing the superconducting qutrit coupler with different types of
physical qutrit, such as an atom in the case of cavity QED, to accomplish the
same task.Comment: 11 pages, 5 figures, accepted by Phys. Rev.
- …