25,315 research outputs found

    Electromagnetic Scattering and Statistic Analysis of Clutter from Oil Contaminated Sea Surface

    Get PDF
    In order to investigate the electromagnetic (EM) scattering characteristics of the three dimensional sea surface contaminated by oil, a rigorous numerical method multilevel fast multipole algorithm (MLFMA) is developed to preciously calculate the electromagnetic backscatter from the two-layered oil contaminated sea surface. Illumination window and resistive window are combined together to depress the edge current induced by artificial truncation of the sea surface. By using this combination, the numerical method can get a high efficiency at a less computation cost. The differences between backscatters from clean sea and oil contaminated sea are investigated with respect to various incident angles and sea states. Also, the distribution of the sea clutter is examined for the oil-spilled cases in this paper

    All-optical Imprinting of Geometric Phases onto Matter Waves

    Full text link
    Traditional optical phase imprinting of matter waves is of a dynamical nature. In this paper we show that both Abelian and non-Abelian geometric phases can be optically imprinted onto matter waves, yielding a number of interesting phenomena such as wavepacket re-directing and wavepacket splitting. In addition to their fundamental interest, our results open up new opportunities for robust optical control of matter waves.Comment: 5 pages, 2 figures, to appear in Phys. Rev.

    On the Application of Gluon to Heavy Quarkonium Fragmentation Functions

    Get PDF
    We analyze the uncertainties induced by different definitions of the momentum fraction zz in the application of gluon to heavy quarkonium fragmentation function. We numerically calculate the initial gJ/ψg \to J / \psi fragmentation functions by using the non-covariant definitions of zz with finite gluon momentum and find that these fragmentation functions have strong dependence on the gluon momentum k\vec{k}. As k| \vec{k} | \to \infty, these fragmentation functions approach to the fragmentation function in the light-cone definition. Our numerical results show that large uncertainties remains while the non-covariant definitions of zz are employed in the application of the fragmentation functions. We present for the first time the polarized gluon to J/ψJ/\psi fragmentation functions, which are fitted by the scheme exploited in this work.Comment: 11 pages, 7 figures;added reference for sec.

    Monotonicity and logarithmic convexity relating to the volume of the unit ball

    Full text link
    Let Ωn\Omega_n stand for the volume of the unit ball in Rn\mathbb{R}^n for nNn\in\mathbb{N}. In the present paper, we prove that the sequence Ωn1/(nlnn)\Omega_{n}^{1/(n\ln n)} is logarithmically convex and that the sequence Ωn1/(nlnn)Ωn+11/[(n+1)ln(n+1)]\frac{\Omega_{n}^{1/(n\ln n)}}{\Omega_{n+1}^{1/[(n+1)\ln(n+1)]}} is strictly decreasing for n2n\ge2. In addition, some monotonic and concave properties of several functions relating to Ωn\Omega_{n} are extended and generalized.Comment: 12 page

    Experimental demonstration of phase-remapping attack in a practical quantum key distribution system

    Full text link
    Unconditional security proofs of various quantum key distribution (QKD) protocols are built on idealized assumptions. One key assumption is: the sender (Alice) can prepare the required quantum states without errors. However, such an assumption may be violated in a practical QKD system. In this paper, we experimentally demonstrate a technically feasible "intercept-and-resend" attack that exploits such a security loophole in a commercial "plug & play" QKD system. The resulting quantum bit error rate is 19.7%, which is below the proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314, 2007) proposed by our group.Comment: 16 pages, 6 figure

    Phase-Remapping Attack in Practical Quantum Key Distribution Systems

    Full text link
    Quantum key distribution (QKD) can be used to generate secret keys between two distant parties. Even though QKD has been proven unconditionally secure against eavesdroppers with unlimited computation power, practical implementations of QKD may contain loopholes that may lead to the generated secret keys being compromised. In this paper, we propose a phase-remapping attack targeting two practical bidirectional QKD systems (the "plug & play" system and the Sagnac system). We showed that if the users of the systems are unaware of our attack, the final key shared between them can be compromised in some situations. Specifically, we showed that, in the case of the Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders the final key insecure, whereas the same range of QBER values has been proved secure if the two users are unaware of our attack; also, we demonstrated three situations with realistic devices where positive key rates are obtained without the consideration of Trojan horse attacks but in fact no key can be distilled. We remark that our attack is feasible with only current technology. Therefore, it is very important to be aware of our attack in order to ensure absolute security. In finding our attack, we minimize the QBER over individual measurements described by a general POVM, which has some similarity with the standard quantum state discrimination problem.Comment: 13 pages, 8 figure

    Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors

    Full text link
    We report on the observation of a non-uniform dark count rate in Superconducting Nanowire Single Photon Detectors (SNSPDs), specifically focusing on an afterpulsing effect present when the SNSPD is operated at a high bias current regime. The afterpulsing exists for real detection events (triggered by input photons) as well as for dark counts (no laser input). In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behavior and speculate that it is not due to the SNSPD itself but rather the amplifiers used to boost the electrical output signal from the SNSPD. We show that the afterpulsing indeed disappears when we use a different amplifier with a better low frequency response. We also examine the short-lived enhancement of detection efficiency during the recovery of the SNSPD due to temporary perturbation of the bias and grounding conditions

    A General Information Theoretical Proof for the Second Law of Thermodynamics

    Full text link
    We show that the conservation and the non-additivity of the information, together with the additivity of the entropy make the entropy increase in an isolated system. The collapse of the entangled quantum state offers an example of the information non-additivity. Nevertheless, the later is also true in other fields, in which the interaction information is important. Examples are classical statistical mechanics, social statistics and financial processes. The second law of thermodynamics is thus proven in its most general form. It is exactly true, not only in quantum and classical physics but also in other processes, in which the information is conservative and non-additive.Comment: 4 page

    Comment on "Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography"

    Full text link
    This is a comment on the publication by Yuan et al. [Appl. Phys. Lett. 98, 231104 (2011); arXiv:1106.2675v1 [quant-ph]].Comment: 2 page
    corecore