21 research outputs found

    Dual-polarization huge photonic spin Hall shift and deep-subwavelength sensing based on topological singularities in one-dimensional photonic crystals

    Full text link
    Although several efforts have been taken to enhance the photonic spin Hall shift in deep-subwavelength region, according to effective medium theory, the fundamental confliction between near-zero reflection coefficient and near-zero incident angle still hinders the further application. Here, we reveal a fundamental breakdown of effective medium theory due to the existing of topological singularity in deep-subwavelength region in one-dimensional photonic crystals. We find that near the topological singularity, huge photonic spin Hall shift can be achieved for s-polarization and p-polarization. At the topological singularity, the reflected filed is split as dipole-like distribution with zero photonic spin Hall shift for both-polarizations, which is resulted from the interfere of the spin-maintained normal light and spin-flipped abnormal light. Based on the theoretical research, dual-polarizations thickness and dielectric constant sensing devices can be designed in deep-subwavelength region. Further more, by applying more complicated layered structure, multi-channels dual-polarizations detection and broadband dual-polarizations huge spin Hall shift platform can be designed. This work paves the way to exploring the topological properties and polarization control of photonic crystals and provides a prospective method for the design of multi-channels sensitive detection spin optical devices

    Sorptive affinity of ionic surfactants on silt loamy soil

    No full text
    Due to their broad applications, ionic surfactants have already been released into or utilized in soil and environmental systems. However, current understanding on the sorption behavior of surfactants onto soils is still limited. This work systematically investigated the sorption kinetics and isotherms of one cationic surfactant, cetyltrimethylammonium bromide (CTAB), and one anionic surfactant, sodium dodecyl sulfate (SDS), onto a silt loamy soil to determine the governing sorption mechanisms. The pseudo-second-order rate equation described the sorption kinetics data better than the pseudo-first-order rate equation. Experimental data showed that the sorption equilibrium for CTAB and SDS were reached at 24 and 240 h, respectively. Langmuir equation was better than Freundlich equation in simulating the sorption isotherms of CTAB and SDS on the soil. Soil Langmuir maximum sorption capacity of CTAB was much higher than that to SDS. When the experimental temperature increased, the sorption of CTAB and SDS on the soil decreased. In addition, the sorptive process of the surfactants on the soil was spontaneous and exothermal, as indicated by the absolute values of Gibbs free energy and enthalpy. The results also indicated that physical sorption was the dominant mechanism for the sorption of the two surfactants on the soil. Findings from this work are crucial to understand the environmental behaviors of ionic surfactants

    Identification and Functional Analysis of a Novel MIP Gene Mutation Associated with Congenital Cataract in a Chinese Family.

    No full text
    Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0

    The Topological Origin of Boundary Charges at Edges of One-Dimensional Crystals without Inversion Symmetry

    No full text
    We report the edge states and non-zero boundary charges in one-dimensional photonic crystals (1D PhCs) without inversion symmetry. In contrast to common 1D systems, we show that edge states corresponding to non-zero boundary charges do exist in these asymmetric 1D PhCs even if we cannot obtain non-integral topological invariants. Moreover, an edge state could be observed in the interface between the PhC without inversion symmetry and the well-defined trivial PhC. Finally, the origin of the non-quantized boundary charges is unveiled by the non-central Wannier center. Not only exact solutions of photonic systems, but the above topological phenomena can also be found in the tight-binding models. This work proposes a way to study the 1D symmetries-broken systems and provides models to show the topological origin of boundary charges, which is suitable for both classic systems and quantum systems

    Characterizing Spatiotemporal Dynamics of CH<sub>4</sub> Fluxes from Rice Paddies of Cold Region in Heilongjiang Province under Climate Change

    No full text
    Paddy fields have become a major global anthropogenic CH4 emission source, and climate change affects CH4 emissions from paddy ecosystems by changing crop growth and the soil environment. It has been recognized that Heilongjiang Province has become an important source of CH4 emission due to its dramatically increased rice planting area, while less attention has been paid to characterize the effects of climate change on the spatiotemporal dynamics of CH4 fluxes. In this study, we used the calibrated and validated Long Ashton Research Station Weather Generator (LARS-WG) model and DeNitrification-DeComposition (DNDC) model to simulate historical and future CH4 fluxes under RCP 4.5 and RCP 8.5 of four global climate models (GCMs) in Heilongjiang Province. During 1960&#8315;2015, the average CH4 fluxes and climatic tendencies were 145.56 kg C/ha and 11.88 kg C/ha/(10a), respectively. Spatially, the CH4 fluxes showed a decreasing trend from west to east, and the climatic tendencies in the northern and western parts were higher. During 2021&#8315;2080, the annual average CH4 fluxes under RCP 4.5 and RCP 8.5 were predicted to be 213.46 kg C/ha and 252.19 kg C/ha, respectively, and their spatial distributions were similar to the historical distribution. The average climatic tendencies were 13.40 kg C/ha/(10a) and 29.86 kg C/ha/(10a), respectively, which decreased from west to east. The simulation scenario analysis showed that atmospheric CO2 concentration and temperature affected CH4 fluxes by changing soil organic carbon (SOC) content and plant biomass. This study indicated that a paddy ecosystem in a cold region is an important part of China&#8217;s greenhouse gas emission inventory in future scenarios

    Synthesis and electrochemical properties of spinel Li4Ti5O12-xClx anode materials for lithium-ion batteries

    No full text
    Li4Ti5O12-x Cl (x) (0 acurrency signaEurox acurrency signaEuro0.3) compounds were synthesized successfully via high temperature solid-state reaction. X-ray diffraction and scanning electron microscopy were used to characterize their structure and morphology. Cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge cycling performance tests were used to characterize their electrochemical properties. The results showed that the Li4Ti5O12-x Cl (x) (0 acurrency signaEurox acurrency signaEuro0.3) compounds were well-crystallized pure spinel phase and that the grain sizes of the samples were about 3-8 mu m. The Li4Ti5O11.8Cl0.2 sample presented the best discharge capacity among all the samples and showed better reversibility and higher cyclic stability compared with pristine Li4Ti5O12. When the discharge rate was 0.5 C, the Li4Ti5O11.8Cl0.2 sample presented the superior discharge capacity of 148.7 mAh g(-1), while that of the pristine Li4Ti5O12 was 129.8 mAh g(-1); when the discharge rate was 2 C, the Li4Ti5O11.8Cl0.2 sample presented the discharge capacity of 120.7 mAh g(-1), while that of the pristine Li4Ti5O12 was only 89.8 mAh g(-1)

    Family pedigree.

    No full text
    <p>A four-generation Chinese family affected with autosomal dominant cataract is shown. Squares and circles indicate males and females, respectively. The black symbols represent the affected members and open symbols represent the unaffected individuals. The diagonal line indicates a deceased family member and the black arrow indicates the proband. The family members attending this study are marked with asterisks.</p

    Subcellular location of WT-AQP0 and AQP0-D150H in two expressing cells.

    No full text
    <p>(A) Representative fluorescence microscopy images show the distributions of immunoreactive AQP0 and a Golgi apparatus resident protein (GM130) in HeLa cells which were transiently transfected with wild type AQP0 or AQP0-D150H. The wild type AQP0 was detected mainly at the plasma membrane (white arrow) and in cytoplasm. By contrast, AQP0-D150H was not observed at the plasma membrane other than cytoplasmic sites which extensively overlapped with that of GM130. Scale bar = 10μm. (B) The quantities of wild type and p.D150H mutant AQP0 in membrane-enriched lysates of HEK-293T cells were assessed by western blotting, after WT-AQP0 or AQP0-D150H transfected, GAPDH was used as control.</p

    Mutation screening.

    No full text
    <p>Forward sequence analysis of exon 2 of MIP in the normal and affected members of this family. The DNA sequence chromatogram shows a heterozygous G>C nucleotide change (black arrow) in exon 2 of MIP (c.448G>C), which leads to the replacement of aspartic acid (GAC) with histidine (CAC) at codon 150 (p.D150H).</p

    Haplotype of the cataractous family.

    No full text
    <p>Eight locus around <i>MIP</i> were genotyped. The disease-susceptibility haplotype (indicated by a vertical box) showed cosegregation with affected members in this family from <i>D12S1632</i> to <i>D12S1691</i>.</p
    corecore