28 research outputs found

    UV-Accelerated Photocatalytic Degradation of Pesticide over Magnetite and Cobalt Ferrite Decorated Graphene Oxide Composite

    Get PDF
    Pesticides are one of the main organic pollutants as they are highly toxic and extensively used worldwide. The reclamation of wastewater containing pesticides is of utmost importance. For this purpose, GO-doped metal ferrites (GO-FeO and GO-CoFeO) were prepared and characterized using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopic techniques. Photocatalytic potentials of catalysts were investigated against acetamiprid's degradation. A detailed review of the parametric study revealed that efficiency of overall Fenton's process relies on the combined effects of contributing factors, i.e., pH, initial oxidant concentration, catalyst dose, contact time, and acetamiprid load. ~97 and ~90% degradation of the acetamiprid was achieved by GO-CoFeO and GO-FeO, respectively during the first hour under UV radiations at optimized reaction conditions. At optimized conditions (i.e., pH:3, [HO]: 14.5 mM (for FeO, GO-FeO and GO-CoFeO) and 21.75 mM (for CoFeO), catalysts: 100 mgL, time: 60min) the catalysts exhibited excellent performance, with high degradation rate, magnetic power, easy recovery at the end, and efficient reusability (up to 5 cycles without any considerable loss in catalytic activity). A high magnetic character offers its easy separation from aqueous systems using an external magnet. Moreover, the combined effects of experimental variables were assessed simultaneously and justified using response surface methodology (RSM).This research received no external funding

    Exploring copyrolysis characteristics and thermokinetics of peach stone and bituminous coal blends

    Get PDF
    Copyrolysis, being an active area of research due to its synergistic impact in utilizing diverse fuel resources, including waste materials, like, peach stone (PS), has been the focal point for this study. PS, produced in vast quantities annually and typically intended for landscaping or insulation purposes, is being studied in combination with low‐grade bituminous coal for energy utilization focusing on thermokinetics and synergistic aspects. Coal‐peach stone (C‐PS) blends were formulated at different ratios and subjected to comprehensive characterization techniques, including ultimate analysis (CHN‐S), gross calorific value (GCV), Fourier transform infrared spectroscopy, and thermogravimetric analyzer (TGA). The ultimate analysis revealed an enhancement in carbon and hydrogen content from 45.38% to 68.08% and from 3.89% to 6.96%, respectively. Additionally, a reduction in sulfur and nitrogen content from 0.54% to 0.11% and from 1.16% to 0.42%, respectively, was observed with an increase in the ratio of PS in the C‐PS blends. The GCV of C‐PS blends ranged from 20.75 to 26.01 MJ kg−1. The pyrolysis conditions simulated in TGA are pivotal for evaluating thermokinetics and synergistic effects. The 60C:40PS blend shows a positive synergy index (SI) value of 0.0203% concerning total mass loss (MLT) indicating a favorable condition for bio‐oil generation. Coats–Redfern model‐fitting method reveals that the activation energy (Ea) of C‐PS blends increases in Section II with the addition of PS, and conversely, it decreases in Section III. The Ea for 100PS and 100C was 106.76 and 45.85 kJ mol−1 through (D3) and (F1), respectively, which was improved through the optimal blend 60C:40PS with an Ea of 94.56 and 27.58 kJ mol−1 through (D3) and (F2), respectively. The values obtained from linear regression prove that the kinetic models are effective while the thermodynamic analysis indicates that the pyrolytic behavior of C‐PS blends is characterized as endothermic, nonspontaneous, and capable of achieving thermodynamic equilibrium more rapidly

    Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities

    No full text
    A general rise in environmental and anthropogenically induced greenhouse gas emissions has resulted from worldwide population growth and a growing appetite for clean energy, industrial outputs, and consumer utilization. Furthermore, well-established, advanced, and emerging countries are seeking fossil fuel and petroleum resources to support their aviation, electric utilities, industrial sectors, and consumer processing essentials. There is an increasing tendency to overcome these challenging concerns and achieve the Paris Agreement’s priorities as emerging technological advances in clean energy technologies progress. Hydrogen is expected to be implemented in various production applications as a fundamental fuel in future energy carrier materials development and manufacturing processes. This paper summarizes recent developments and hydrogen technologies in fuel refining, hydrocarbon processing, materials manufacturing, pharmaceuticals, aircraft construction, electronics, and other hydrogen applications. It also highlights the existing industrialization scenario and describes prospective innovations, including theoretical scientific advancements, green raw materials production, potential exploration, and renewable resource integration. Moreover, this article further discusses some socioeconomic implications of hydrogen as a green resource

    Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview

    No full text
    Dyes are used in various industries as coloring agents. The discharge of dyes, specifically synthetic dyes, in wastewater represents a serious environmental problem and causes public health concerns. The implementation of regulations for wastewater discharge has forced research towards either the development of new processes or the improvement of available techniques to attain efficient degradation of dyes. Catalytic oxidation is one of the advanced oxidation processes (AOPs), based on the active radicals produced during the reaction in the presence of a catalyst. This paper reviews the problems of dyes and hydroxyl radical-based oxidation processes, including Fenton’s process, non-iron metal catalysts, and the application of thin metal catalyst-coated tubular reactors in detail. In addition, the sulfate radical-based catalytic oxidation technique has also been described. This study also includes the effects of various operating parameters such as pH, temperature, the concentration of the oxidant, the initial concentration of dyes, and reaction time on the catalytic decomposition of dyes. Moreover, this paper analyzes the recent studies on catalytic oxidation processes. From the present study, it can be concluded that catalytic oxidation processes are very active and environmentally friendly methods for dye removal

    A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels

    No full text
    Numerous attempts have been made to produce new materials and technology for renewable energy and environmental improvements in response to global sustainable solutions stemming from fast industrial expansion and population growth. Zeolites are a group of crystalline materials having molecularly ordered micropore arrangements. Over the past few years, progress in zeolites has been observed in transforming biomass and waste into fuels. To ensure effective transition of fossil energy carriers into chemicals and fuels, zeolite catalysts play a key role; however, their function in biomass usage is more obscure. Herein, the effectiveness of zeolites has been discussed in the context of biomass transformation into valuable products. Established zeolites emphasise conversion of lignocellulosic materials into green fuels. Lewis acidic zeolites employ transition of carbohydrates into significant chemical production. Zeolites utilise several procedures, such as catalytic pyrolysis, hydrothermal liquefaction, and hydro-pyrolysis, to convert biomass and lignocelluloses. Zeolites exhibit distinctive features and encounter significant obstacles, such as mesoporosity, pore interconnectivity, and stability of zeolites in the liquid phase. In order to complete these transformations successfully, it is necessary to have a thorough understanding of the chemistry of zeolites. Hence, further examination of the technical difficulties associated with catalytic transformation in zeolites will be required. This review article highlights the reaction pathways for biomass conversion using zeolites, their challenges, and their potential utilisation. Future recommendations for zeolite-based biomass conversion are also presented

    Deep eutectic solvents as alternative green solvents for the efficient desulfurization of liquid fuel: A comprehensive review

    No full text
    Increase in the requirement of energy consumption has been followed by a consistent rise in sulfur emission with economic and health issues. Moreover, it considerably decreases the efficacy of developed emission control systems of diesel engines, thus ultimately harms the atmosphere. It leads to a strict sulfur discharge limit to approximately 15 ppm and sequentially served as a goal for investigating different desulfurization technologies. Hydrodesulfurization, a conventional refinery desulfurization process is operated at higher pressure and temperature, employing expensive catalysts and hydrogen gas. This review aims to consider the merits and demerits of main areas of the substitute desulfurization processes, comprising adsorptive, extractive, oxidative, and biodesulfurization and comprehensively discuss the role of DESs emphasizing on the factors affecting in extractive and oxidative desulfurization. Different factors such as DESs selection, extraction temperature, extraction time, DESs regeneration, and multistage extractions are considered that affect the desulfurization efficiency. Deep eutectic solvents explored in 2001, a less toxic solvent have been keenly investigated as an alternative solvent for extractive desulfurization since 2013. DESs showed a higher capability for sulfur elimination. Low synthetic cost and economical raw materials, less solvent to feed ratio, and valuable green characteristics show DESs suitable for the desulfurization process
    corecore