39 research outputs found
EGLN1 variants influence expression and SaO2 levels to associate with high-altitude pulmonary oedema and adaptation
Abstract EGLN1 [encoding HIF (hypoxia-inducible factor)-prolyl hydroxylase 2] plays a pivotal role in the HIF pathway and has emerged as one of the most intriguing genes with respect to physiology at HA (high altitude). EGLN1, being an actual oxygen sensor, appears to have a potential role in the functional adaptation to the hypobaric hypoxic environment. In the present study, we screened 30 polymorphisms of EGLN1, evaluated its gene expression and performed association analyses. In addition, the role of allelic variants in altering TF (transcription factor)-binding sites and consequently the replacement of TFs at these loci was also investigated. The study was performed in 250 HAPE-p [HAPE (HA pulmonary oedema)-patients], 210 HAPE-f (HAPE-free controls) and 430 HLs (healthy Ladakhi highland natives). The genotypes of seven polymorphisms, rs1538664, rs479200, rs2486729, rs2790879, rs480902, rs2486736 and rs973252, differed significantly between HAPE-p and HAPE-f (P < 0.008). The genotypes AA, TT, AA, GG, CC, AA and GG of rs1538664, rs479200, rs2486729, rs2790879, rs480902, rs2486736 and rs973252, prevalent in HAPE-p, were identified as risk genotypes and their counterpart homozygotes, prevalent in HLs, were identified as protective. EGLN1 expression was up-regulated 4.56-fold in HAPE-p (P = 0.0084). The risk genotypes, their haplotypes and interacting genotypes were associated with up-regulated EGLN1 expression (P < 0.05). Similarly, regression analysis showed that the risk alleles and susceptible haplotypes were associated with decreased SaO 2 (arterial oxygen saturation) levels in the three groups. The significant inverse correlation of SaO 2 levels with PASP (pulmonary artery systolic pressure) and EGLN1 expression and the association of these polymorphisms with SaO 2 levels and EGLN1 expression contributed to uncovering the molecular mechanism underlying hypobaric hypoxic adaptation and maladaptation
Arterial oxygen saturation under hypoxic environment of high-altitude associates with routine physical activities of natives
Per cent oxygen saturation of arterial haemoglobin levels (SaO2), a measure of hypoxemia has been analysed in the permanent residents of Ladakh. The population recognized as high-altitude controls (HAC) and high-altitudemonks (HAM), resided at the same altitude of 3600 m but differed in their routines. SaO2 was measured with a Finger-Pulse Oximeter. The HAM had 3.08% higher SaO2 (P<0.001) compared to the HAC, with mean SaO2 of 91.8°6.1% and 89.0°2.6%, respectively. Furthermore, the younger HAM also revealed an elevation of 4.55% SaO2 than the HAC of identical age (P<0.001). The HAM, who are less hypoxemic than their counterparts are physically more active, which may be a selective advantage in the extreme environment of higher altitudes
Angiotensin converting enzyme insertion allele in relation to high altitude adaptation
Angiotensin converting enzyme (ACE) gene I/D polymorphism has been associated with high altitude (HA) disorders as well as physical performance. We, however, envisage that the polymorphism may be associated with adaptation to the hypobaric hypoxia of altitude, thus facilitating physical performance. For this purpose, three unrelated adult male groups, namely (1) the Ladakhis (HLs), who reside at and above a height of 3600 m, (2) lowlanders, who migrated to Ladakh (MLLs), and (3) resident lowlanders (LLs), have been investigated. The HLs had significantly (p<0.001) greater numbers of the II homozygotes and the ID heterozygotes than the DD homozygotes, the genotype distribution being 0.46, 0.43 and 0.11 for II, ID and DD genotypes respectively. The MLLs comprised 60% II homozygotes, which was higher (p<0.001) than the HLs (46%). In the LLs, the heterozygotes were greater (p<0.001) in number than the II and DD homozygotes. The I allele frequency was 0.72 in the MLLs, 0.67 in the HLs and 0.55 in the LLs. Polymorphism study suggested that the II genotype could be associated with altitude adaptation, which might influence physical efficiency
Variations in angiotensin-converting enzyme gene insertion/deletion polymorphism in Indian populations of different ethnic origins
The pattern of angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism in the Indian population is poorly known. In order to determine the status of the polymorphism, young unrelated male army recruits were screened. The population had cultural and linguistic differences and lived in an environment that varied significantly from one region to another. Analysis of the genotype, showed higher frequency of the insertion allele in four of the five groups i.e. I allele frequency was significantly higher (P<005) in Dogras, Assamese and Kumaonese. The deletion allele frequency was comparatively higher in the fifth group that belonged to Punjab. A correlation was observed between the genotype and enzyme activity. Involvement of a single D allele in the genotype enhanced the activity up to 37.56 ± 313%. The results suggested ethnic heterogeneity with a significant gene cline with higher insertion allele frequency. Such population-based data on various polymorphisms can ultimately be exploited in pharmacogenomics
Phenotype, Body Composition, and Prediction Equations (Indian Fatty Liver Index) for Non-Alcoholic Fatty Liver Disease in Non-Diabetic Asian Indians: A Case-Control Study.
In this study, we have attempted comparison of detailed body composition phenotype of Asian Indians with non-alcoholic fatty liver disease (NAFLD) vs. those without, in a case controlled manner. We also aim to analyse prediction equations for NAFLD for non-diabetic Asian Indians, and compare performance of these with published prediction equations researched from other populations.In this case-control study, 162 cases and 173 age-and sex-matched controls were recruited. Clinical, anthropometric, metabolic, and body composition profiles, and liver ultrasound were done. Fasting insulin levels, value of homeostasis model assessment of insulin resistance (HOMA-IR), and serum high sensitive C-reactive protein (hs-CRP) levels were evaluated. Multivariate logistic and linear regression analyses were used to arrive at prediction equations for fatty liver [Indian fatty liver index (IFLI)].As compared to those without fatty liver, those with fatty liver exhibited the following; Excess dorsocervical fat ('Buffalo hump'), skin tags, xanthelasma, 'double chin', arcus; excess total, abdominal and subcutaneous adiposity, and high blood pressure, blood glucose, measures of insulin resistance (fasting insulin and HOMA-IR values), lipids and hs-CRP levels. Two prediction equations were developed; Clinical [Indian Fatty Liver Index-Clinical; IFLI-C]: 1(double chin) +15.5 (systolic blood pressure) +13.8 (buffalo hump); and IFLI-Clinical and Biochemical (CB): serum triglycerides+12 (insulin)+1(systolic blood pressure) +18 (buffalo hump). On ROC Curve analysis, IFLI performed better than all published prediction equations, except one.Non-diabetic Asian Indians with NAFLD researched by us were overweight/obese, had excess abdominal and subcutaneous fat, multiple other phenotypic markers, had higher insulin resistance, glycemia, dyslipidemia and subclinical inflammation than those without. Prediction score developed by us for NAFLD; IFLI-C and IFLI-CB, should be useful for clinicians and researchers
Additional file 1 of Differential methylation in EGLN1 associates with blood oxygen saturation and plasma protein levels in high-altitude pulmonary edema
Additional file 1. Fig. S1 Levels of SpO2 % in HAPE-p, HAPE-f and HLs. Fig. S2Â Dot plot of CpG methylation in EGLN1 in the three study groups, i.e., HAPE-p, HLs and HAPE-f. It revealed 97 CpG sites in EGLN1 CpG island 179. Fig. S3Â Dot plot of CpG methylation in HIF1AN in the three study groups, i.e., HAPE-f, HAPE-p and HLs. It revealed 46 CpG sites in HIF1AN CpG island 47. Table S1 Methylation distribution of CpG sites of EGLN1 and HIF1AN in each subject of the three study groups i.e., HAPE-f, HAPE-p and HLs. Table S2 Real-time PCR conditions for EGLN1 and HIF1AN. Table S3 Sodium bisulfite-conversion-based methylation PCR Primers and conditions for EGLN1 and HIF1AN
Association of the Myostatin gene with obesity, abdominal obesity and low lean body mass and in non-diabetic Asian Indians in north India.
BACKGROUND: To determine the association of the A55T and K153R polymorphisms of the Myostatin gene with obesity, abdominal obesity and lean body mass (LBM) in Asian Indians in north India. MATERIALS AND METHODS: A total of 335 subjects (238 men and 97 women) were assessed for anthropometry, % body fat (BF), LBM and biochemical parameters. Associations of Myostatin gene polymorphisms were evaluated with anthropometric, body composition and biochemical parameters. In A55T polymorphism, BMI (p=0.04), suprailiac skinfold (p=0.05), total skinfold (p=0.008), %BF (p=0.002) and total fat mass (p=0.003) were highest and % LBM (p=0.03) and total LBM (Kg) were lowest (p=0.04) in subjects with Thr/Thr genotype as compared to other genotypes. Association analysis of K153R polymorphism showed that subjects with R/R genotype had significantly higher BMI (p=0.05), waist circumference (p=0.04), %BF (p=0.04) and total fat mass (p=0.03), and lower %LBM (p=0.02) and total LBM [(Kg), (p=0.04)] as compared to other genotypes. Using a multivariate logistic regression model after adjusting for age and sex, subjects with Thr/Thr genotype of A55T showed high risk for high %BF (OR, 3.92, 95% Cl: 2.61-12.41), truncal subcutaneous adiposity (OR, 2.9, 95% Cl: 1.57-6.60)] and low LBM (OR, 0.64, 95% CI: 0.33-0.89) whereas R/R genotype of K153R showed high risk of obesity (BMI; OR, 3.2, 95% CI: 1.2-12.9; %BF, OR, 3.6, 95% CI: 1.04-12.4), abdominal obesity (OR, 2.12, 95% CI: 2.71-14.23) and low LBM (OR, 0.61, 95% CI: 0.29-0.79). CONCLUSIONS/SIGNIFICANCE: We report that variants of Myostatin gene predispose to obesity, abdominal obesity and low lean body mass in Asian Indians in north India