632 research outputs found

    Unconventional order-disorder phase transition in improper ferroelectric hexagonal manganites

    Full text link
    The improper ferroelectricity in YMnO3_3 and other related multiferroic hexagonal manganites are known to cause topologically protected ferroelectric domains that give rise to rich and diverse physical phenomena. The local structure and structural coherence across the ferroelectric transition, however, were previously not well understood. Here we reveal the evolution of the local structure with temperature in YMnO3_3 using neutron total scattering techniques, and interpret them with the help of first-principles calculations. The results show that, at room temperature, the local and average structures are consistent with the established ferroelectric P63cmP6_3cm symmetry. On heating, both local and average structural analyses show striking anomalies from ∼800\sim 800 K up to the Curie temperature consistent with increasing fluctuations of the order parameter angle. These fluctuations result in an unusual local symmetry lowering into a \textit{continuum of structures} on heating. This local symmetry breaking persists into the high-symmetry non-polar phase, constituting an unconventional type of order-disorder transition.Comment: 10 pages, 5 figure

    The effects of under-sleeper pads on sleeper-ballast interaction

    Get PDF
    Under-sleeper pads (USPs), typically made from polyurethane, are used by railways in certain parts of the world to reduce ballast settlement and consequently lengthen the ballast tamping cycle. The rationale behind this relatively new addition to the conventional ballasted track structure is that the pad increases the contact area between the angular ballast particles and the underside of the concrete sleeper, with the effect that ballast breakdown and total track settlement are reduced. This paper describes two experiments on the effects of USPs on four aspects of sleeper–ballast interaction, namely contact area, contact pressure, ballast settlement and ballast breakdown. Static and dynamic tests up to 1 million loading cycles were performed under controlled laboratory conditions on concrete sleepers with and without USPs. Sophisticated pressure sensors revealed an increase in contact area from 12% to 35% for static loading tests, and from 8% to 20% for dynamic tests, with a resulting 70% reduction in contact pressure. In addition, a 44% reduction in ballast settlement and a 23% reduction in ballast breakdown were achieved by the introduction of USPs. In conclusion it is argued that the introduction of USPs specifically on heavy-haul lines would offer significant advantages with respect to ballast settlement and breakdown. These advantages are most likely to lengthen general ballast tamping and screening cycles, resulting in significant life cycle cost savings.Transnet Freight Rail is gratefully acknowledged for financial support to the Chair in Railway Engineering at the University of Pretoria.http://www.journals.co.za/ej/ejour_civileng.htmlam2016Civil Engineerin
    • …
    corecore