2 research outputs found

    Antinociceptive Activity Of Syzygium Cumini Leaves Ethanol Extract On Orofacial Nociception Protocols In Rodents

    No full text
    Context: Syzygium cumini (L.) Skeels (Myrtaceae) is a tree with dark purple fruits, popularly known as "jambolão" or "jambolan". In folk medicine, this plant is used for the treatment of diabetes and inflammatory conditions. Objective: We investigated the antinociceptive effect of ethanol extract (EE) from S. cumini leaves on orofacial nociception. Material and methods: The antinociceptive effects of the EE obtained from the leaves of S. cumini were evaluated in mice using formalin- and glutamate-induced orofacial nociception. Results: ESI-MS/MS analyses demonstrated that major constituents in the analyzed samples coincided with the mass of the phenolic acids and flavonoids. In pharmacological approach, pre-treatment with EE (100, 200, or 400mg/kg, p.o.) significantly reduced (p<0.05 or p<0.01) the percentage of paw licks time during phase 2 (43.2, 47.1, and 57.4%, respectively) of a formalin pain test when compared to control group animals. This effect was prevented by pretreatment with glibenclamide and NG-nitro-l-arginine (l-NOARG). The extract, all doses, also caused a marked inhibition (p<0.01 or p<0.001) of glutamate-induced orofacial nociception (38.8, 51.7, and 54.7%) when compared with the control group. No effect was observed with the rota-rod model. Conclusions: We can suggest that the antinociceptive effect of the EE is mediated by peripheral mechanisms, possibly involving KATP channels and the nitric oxide pathways. These effects appear to be related to the presence of flavonoids compounds, such as quercetin. © 2014 Informa Healthcare USA, Inc. All rights reserved.526762766Abbadie, C., Lindia, J.A., Cumiskey, A.M., Peterson, L.B., Mudgett, J.S., Bayne, E.K., DeMartino, J.A., Forrest, M.J., Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2 (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (13), pp. 7947-7952. , DOI 10.1073/pnas.1331358100Ae-Mmr, A., Fayed, S.A., Shalaby, E.A., El-Shemy, H.A., Syzygium cumini (pomposia) active principles exhibit potent anticancer and antioxidant activities (2011) Afr J Pharm Pharmacol, 5, pp. 948-956Anhe, G.F., Okamoto, M.M., Kinote, A., Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice in L6 myotubes (2012) Eur J Pharmacol, 689, pp. 285-293Ayyanar, M., Subash-Babu, P., Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses (2012) Asian Pak J Trop Biomed, 2012, pp. 240-246Brito, R.G., Santos, P.L., Prado, D.S., Citronellol reduces orofacial nociceptive behaviour in mice - Evidence of involvement of retrosplenial cortex and periaqueductal grey areas (2013) Basic Clin Pharmacol Toxicol, 112, pp. 215-221Candiracci, M., Piatti, E., Dominguez-Barragan, M., Antiinflammatory activity of a honey flavonoid extract on lipopolysaccharide- activated N13 microglial cells (2012) J Agric Food Chem, 60, pp. 12304-12311De Brito, E.S., Pessanha De Araujo, M.C., Lin, L.-Z., Harnly, J., Determination of the flavonoid components of cashew apple (Anacardium occidentale) by LC-DAD-ESI/MS (2007) Food Chemistry, 105 (3), pp. 1112-1118. , DOI 10.1016/j.foodchem.2007.02.009, PII S0308814607001896Hiermann, A., Schramm, H.W., Laufer, S., Anti-inflammatory activity of myricetin-3-O-β-D-glucuronide and related compounds (1998) Inflammation Research, 47 (11), pp. 421-427. , DOI 10.1007/s000110050355Hoffmann-Ribani, R., Huber, L.S., Rodriguez-Amaya, D.B., Flavonols in fresh and processed Brazilian fruits (2009) J Food Comp Anal, 22, pp. 263-268Le Bars, D., Gozariu, M., Cadden, S.W., Animal models of nociception (2001) Pharmacological Reviews, 53 (4), pp. 597-652Lipton, S.A., Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond (2006) Nat Rev Drug Discov, 5, pp. 160-170Luccarini, P., Childeric, A., Gaydier, A.-M., Voisin, D., Dallel, R., The Orofacial Formalin Test in the Mouse: A Behavioral Model for Studying Physiology and Modulation of Trigeminal Nociception (2006) Journal of Pain, 7 (12), pp. 908-914. , DOI 10.1016/j.jpain.2006.04.010, PII S1526590006007644Marinelli, S., Vaughan, C.W., Schnell, S.A., Wessendorf, M.W., Christie, M.J., Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes (2002) Journal of Neuroscience, 22 (24), pp. 10847-10855Muruganandan, S., Srinivasan, K., Chandra, S., Tandan, S.K., Lal, J., Raviprakash, V., Anti-inflammatory activity of Syzygium cumini bark (2001) Fitoterapia, 72 (4), pp. 369-375. , DOI 10.1016/S0367-326X(00)00325-7, PII S0367326X00003257Narita, M., Hashimoto, K., Amano, T., Narita, M., Niikura, K., Nakamura, A., Suzuki, T., Post-synaptic action of morphine on glutamatergic neuronal transmission related to the descending antinociceptive pathway in the rat thalamus (2008) Journal of Neurochemistry, 104 (2), pp. 469-478. , DOI 10.1111/j.1471-4159.2007.05059.xQuintans-Junior, L.J., Melo, M.S., De Dp, S., Antinociceptive activity of citronellal in formalin-, capsaicin- and glutamate-induced orofacial nociception in rodents and its action on nerve excitability (2010) J Orofac Pain, 24, pp. 305-312Raboisson, P., Dallel, R., The orofacial formalin test (2004) Neuroscience and Biobehavioral Reviews, 28 (2), pp. 219-226. , DOI 10.1016/j.neubiorev.2003.12.003, PII S0149763403001593Reanmongkol, W., Matsumoto, K., Watanabe, H., Subhadhirasakul, S., Sakai, S.-I., Antinociceptive and antipyretic effects of alkaloids extracted from the stem bark of Hunteria zeylanica (1994) Biological and Pharmaceutical Bulletin, 17 (10), pp. 1345-1350Rodrguez-Munoz, M., Sanchez-Blazquez, P., Vicente-Sanchez, A., The mu-opioid receptor and the NMDA receptor associate in PAG neurons: Implications in pain control (2012) Neuropsychopharmacology, 37, pp. 338-349Roesler, R., Catharino, R.R., Malta, L.G., Eberlin, M.N., Pastore, G., Antioxidant activity of Annona crassiflora: Characterization of major components by electrospray ionization mass spectrometry (2007) Food Chemistry, 104 (3), pp. 1048-1054. , DOI 10.1016/j.foodchem.2007.01.017, PII S0308814607000702Salvador, M.J., Andreazza, N.L., Lourenco, C.C., Antioxidant capacity and phenolic content of four Myrtaceae plants of the south of Brazil (2011) Nat Prod Commun, 6, pp. 977-982Schoenfelder, T., Warmlin, C.Z., Manfredini, M.S., Hypoglycemic and hypolipidemic effect of leaves from Syzygium cumini (L.) Skeels, Myrtaceae in diabetic rats Braz J Pharmacol 20, 2010, pp. 222-227Timbola, A.K., Szpoganicz, A.B., Branco, A., A new flavonol from leaves of Eugenia jambolana (2002) Fitoterapia, 73, pp. 174-175Ye, M., Han, J., Chen, H., Zheng, J., Guo, D., Analysis of Phenolic Compounds in Rhubarbs Using Liquid Chromatography Coupled with Electrospray Ionization Mass Spectrometry (2007) Journal of the American Society for Mass Spectrometry, 18 (1), pp. 82-91. , DOI 10.1016/j.jasms.2006.08.009, PII S104403050600781
    corecore