5,324 research outputs found

    Fast optimization of parametrized quantum optical circuits

    Full text link
    Parametrized quantum optical circuits are a class of quantum circuits in which the carriers of quantum information are photons and the gates are optical transformations. Classically optimizing these circuits is challenging due to the infinite dimensionality of the photon number vector space that is associated to each optical mode. Truncating the space dimension is unavoidable, and it can lead to incorrect results if the gates populate photon number states beyond the cutoff. To tackle this issue, we present an algorithm that is orders of magnitude faster than the current state of the art, to recursively compute the exact matrix elements of Gaussian operators and their gradient with respect to a parametrization. These operators, when augmented with a non-Gaussian transformation such as the Kerr gate, achieve universal quantum computation. Our approach brings two advantages: first, by computing the matrix elements of Gaussian operators directly, we don't need to construct them by combining several other operators; second, we can use any variant of the gradient descent algorithm by plugging our gradients into an automatic differentiation framework such as TensorFlow or PyTorch. Our results will find applications in quantum optical hardware research, quantum machine learning, optical data processing, device discovery and device design.Comment: 21 pages, 10 figure

    Broadband pseudothermal states with tunable spectral coherence generated via nonlinear optics

    Full text link
    It is well known that the reduced state of a two-mode squeezed vacuum state is a thermal state---i.e. a state whose photon-number statistics obey a geometric distribution. More exotic \emph{broadband} states can be realized as the reduced state of two spectrally-entangled beams generated using nonlinear optics. We show that these broadband "pseudothermal" states are tensor products of states in spectral Schmidt modes, whose photon-number statistics obey a geometric distribution. We study the spectral and temporal coherence properties of these states and show that their spectral coherence can be tuned---from perfect coherence to complete incoherence---by adjusting the pump spectral width. In the limit of a cw pump, these states are tensor products of true thermal states, but with different temperatures at each frequency. This could be an interesting state of light for investigating the interplay between spectral, temporal, and photon-number coherences.Comment: 6 pages main text, 1 full-page figure (12 pages total including reference and appendices

    Dispersive spherical optical model of neutron scattering from Al27 up to 250 MeV

    Get PDF
    A spherical optical model potential (OMP) containing a dispersive term is used to fit the available experimental database of angular distribution and total cross section data for n + Al27 covering the energy range 0.1- 250 MeV using relativistic kinematics and a relativistic extension of the Schroedinger equation. A dispersive OMP with parameters that show a smooth energy dependence and energy independent geometry are determined from fits to the entire data set. A very good overall agreement between experimental data and predictions is achieved up to 150 MeV. Inclusion of nonlocality effects in the absorptive volume potential allows to achieve an excellent agreement up to 250 MeV.Comment: 13 figures (11 eps and 2 jpg), 3 table

    PUNTA AL LLAPIS. Utilitat del buflomedil per al tractament de l'arteriopatia perifèrica

    Get PDF

    Self-calibrating tomography for multi-dimensional systems

    Get PDF
    We present a formalism for self-calibrating tomography of arbitrary dimensional systems. Self-calibrating quantum state tomography was first introduced in the context of qubits, and allows the reconstruction of the density matrix of an unknown quantum state despite incomplete knowledge of the unitary operations used to change the measurement basis. We show how this can be generalized to qudits, i.e. d-level systems, and provide a specific example for a V-type three-level atomic system whose transition dipole moments are not known. We show that it is always possible to retrieve the unknown state and process parameters, except for a set of zero measure in the state-parameter space.Comment: Revised version. 9 pages, 3 figure

    FINANCIAL CHARACTERISTICS OF REFRIGERATED FOOD PRODUCTS TRUCKING FIRMS IN THE U.S.

    Get PDF
    This study provides an overview of the financial characteristics of U. S. refrigerated food products trucking firms as a group and by regions. The analytical tools used for evaluating the financial assessment of the industry were several commonly used liquidity, profitability, and solvency ratios. One of the results reveals that the pre-tax income-to-gross revenue ratio, a measure of profitability, for the firms as a group averaged 0.01. This value means that one-cent of every dollar earned in services ("sales") was available to pay taxes and distribute profits.Agribusiness,

    Non-Hermitian engineering for brighter broadband pseudothermal light

    Full text link
    We show that non-Hermitian engineering can play a positive role in quantum systems. This is in contrast to the widely accepted notion that optical losses are a foe that must be eliminated or, at least, minimized. We take advantage of the interplay between nonlinear interactions and loss to show that spectral-loss engineering can relax phase-matching conditions, enabling generation of broadband pseudothermal states at new frequencies. This opens the door for utilizing the full potential of semiconductor materials that exhibit giant nonlinearities but lack the necessary ingredients for achieving quasi-phase matching. This in turn may pave the way for building on-chip quantum light sources.Comment: 11 pages (6 pages main text); 4 figure
    corecore