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Quantum state tomography relies on the ability to perform well-characterized unitary operations, which are not
always available. This places restrictions on which physical systems can be characterized using such techniques.
We develop a formalism that circumvents the requirement for well-characterized unitary operations by treating
unknown parameters in the state and unitary process on the same footing, thereby simultaneously performing
state and partial process tomography. Our formalism is generalized to d-level systems, and we provide a specific
example for a V-type three-level atomic system whose transition dipole moments are not known. We show that it
is always possible to retrieve not only the unknown state but also the process parameters, except for a set of zero
measure in the state-parameter space.
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I. INTRODUCTION

The characterization of quantum states and processes is
a key step in quantum information processing and quantum
computing [1]. For quantum states, such characterization can
be achieved by performing a variety of measurements on many
identically prepared copies of the state, then using these results
to reconstruct the density matrix that represents the state. This
technique is known as quantum state tomography (QST) [2–4].

The diverse set of prescribed measurements is typically
achieved by applying unitary transformations to the quantum
state before measurement in a convenient basis. This requires
a well-characterized unitary operation, which is not always
available. Self-calibrating tomography (SCT) aims to circum-
vent this requirement by treating all unknown parameters—
both in the state and the process—on the same footing [5].
SCT allows the reconstruction of a quantum state despite
incomplete knowledge of the unitary operations used to change
the measurement basis, while simultaneously solving for the
unknown parameters in the unitary.

The duality between unknown parameters in the state and
process was first highlighted by Brif and Mann [6] in the
context of spectroscopy and interferometry, and the concept of
performing tomography with unknown parameters in both the
state, as well as the process, was introduced by Mogilevtsev [7]
in the context of detector tomography (see also subsequent
work by Mogilevtsev et al. [8]). Related ideas have also been
investigated in the context of gate set tomography by Merkel
et al. [9].

The use of partially characterized unitary operations for
quantum state tomography was first considered by Brańczyk
et al. [5]. There we examined a specific example: tomography
of single and entangled qubits using unitary operations with
one unknown parameter. We successfully reconstructed the
state of polarization-encoded photonic qubits using a wave
plate with unknown retardance. In this work we extend and
formalize the ideas introduced in [5] and provide a full theo-
retical treatment in Sec. II. Using this formalism, we then show
how to generalize SCT to the case of multidimensional systems
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in Sec. III. The characterization of multidimensional systems
is relevant to fundamental questions regarding nonlocality in
higher dimensions [10,11] as well as improved security using
quantum key distribution [12,13]. Recent interest in quantum
effects in biological systems [14–16]—where complex molec-
ular systems undergo poorly characterized evolution—further
motivates the need for techniques such as SCT for higher-
dimensional systems.

To demonstrate the adaptation to higher-dimensional sys-
tems, we consider a specific physical example in Sec. IV:
a nondegenerate V-type three-level atomic system with un-
known transition dipole moments, coupled to the radiation
field. This system is a basic model for the strongly coupled
dimer found in cryptophyte antenna proteins [15]. We show
how SCT can be used to recover the quantum state of the
three-level system as well as determine the unknown transition
dipole moments.

II. TWO-LEVEL SYSTEM

In this section, we develop a full theoretical treatment for
self-calibrating tomography (SCT) in the context of qubits.
We explore several scenarios including the one originally
discussed in [5] and we prove that such schemes will be able
to reconstruct any possible state of a qubit system except for a
set of zero measure. In this exception, a different scheme can
be used.

A requirement of quantum state tomography is the ability
to perform measurements in a variety of different bases. In
many physical systems, there is a “preferred” basis in which
a measurement can be made, e.g., the horizontal or vertical
polarization basis in polarization-encoded single photons;
or the ground-excited state basis for atomic systems. Other
bases are typically accessed by performing well-characterized
unitary operations on the state before measurement, effectively
changing the measurement basis.

Self-calibrating tomography considers the case where
this unitary operation is not completely characterized, yet
controllable to some extent. It is “self-calibrating” in the sense
that certain parameters defining the measurement basis do not
need to be calibrated in advance.
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To illustrate the concept, we begin by defining a general
qubit density operator and a general generator of rotations that
is related to the Hamiltonian Ĥ (t) that governs the unitary
evolution of the state. We then show how the measurement
statistics depend on the parameters of the initial state and the
unitary.

The single-qubit state ρ̂ and generator of rotations under
which the state evolves Ĝ = 1

h̄

∫
dtĤ (t) can be written in the

eigenbasis of the Pauli operator σ̂z, i.e., {|0〉,|1〉}, as follows:

ρ̂ =
(

ρ00 e−iγ ρ01

eiγ ρ01 ρ11

)
; (1a)

Ĝ = 1

2

(
hz e−iφhc

eiφhc −hz

)
. (1b)

This parametrization yields simpler analytical expressions
for the measurement statistics than the usual normalized
Stokes’ parameters. In addition, it highlights the relationship
between the angles φ and γ , which will be discussed below.
The components of the Bloch vectors associated with ρ̂ and Ĝ

are given by

�vρ̂ = {2ρ01 cos(γ ),2ρ01 sin(γ ),ρ00 − ρ11} ; (2a)

�vĜ = {hc cos(φ),hc sin(φ),hz} . (2b)

For ρ̂ to provide a valid description of a quantum state,
it must have positive eigenvalues and unit trace. Given the
parametrization in Eq. (1a), these constraints are equivalent to

|�vρ̂ | =
√

4ρ2
01 + (ρ00 − ρ11)2 � tr(ρ̂) = ρ00 + ρ11 = 1. (3)

The action of the Hamiltonian on the state will be given by

ρ̂ −→ ρ̂ν = Ûν ρ̂Û †
ν , (4)

with

Ûν(hz,hc,φ) = e−iĜ(hz,hc,φ), (5)

where we assume that the Hamiltonian commutes with itself
at all times. We use the label ν to refer to a specific set of
parameters {hz,hc,φ} within the generator G.

By expanding the exponential it is easy to see that the Bloch
vector of the state ρ̂ is rotated by an angle,

� = |�vĜ| =
√

h2
c + h2

z, (6)

around the axis specified by the Bloch vector of Ĝ. This is
then an active transformation of the vector. Equivalently the
action of the Hamiltonian can be defined in terms of the basis
elements {|0〉,|1〉}:

|0〉 −→ |0ν〉 = Û †
ν |0〉; (7a)

|1〉 −→ |1ν〉 = Û †
ν |1〉. (7b)

In this interpretation, the Bloch vector of the state remains
fixed but the Bloch sphere itself rotates by an angle −� around
the axis �vĜ. This is the passive transformation of the reference
frame, which is equivalent to the transformation of the basis
vectors and is illustrated in Fig. 1. Either way, transformation
of ρ̂ according to Ûν , followed by measurement in the {|0〉,|1〉}
basis constitutes measurements given by the projectors,

�̂0
ν = |0ν〉〈0ν |; �̂1

ν = |1ν〉〈1ν |. (8)

We draw attention to the fact that the superscript j in
�̂

j
ν is a label denoting the original projector and should not

be mistaken for an exponent. The statistics associated with
measuring �̂0

ν are given by

n0
ν = tr

(
ρ̂ ′�̂0

ν

) =
∑
i<j

fijρij , (9)

where ρ̂ ′ = N ρ̂ and N is a constant that depends on the
duration of data collection, detector efficiency, loss, etc. In
what follows we reabsorb this constant into ρ̂ ′ and thus
recast the condition tr(ρ̂) = 1 into tr(ρ̂ ′) = N . Once the
unnormalized density matrix ρ̂ ′ is determined it suffices to
divide by its trace to recover ρ̂. The coefficients in Eq. (9) are
given by

f00 = c2 + s2h̃2
z ; (10a)

f11 = s2h̃2
c ; (10b)

f01 = 2[c sin(β) + s cos(β)h̃z]
√

f11, (10c)

where h̃i = hi/�, c = cos(�/2), s = sin(�/2), and β =
φ − γ . We note that there is a nonlinear relationship between
the measurement statistics n0

ν and the parameters hz, hc, and
β. Similarly, the statistics associated with measuring �̂1

ν are
given by

n1
ν = tr

(
ρ̂ ′�̂1

ν

) =
∑
i<j

gijρij , (11)

where

g00 = s2h̃2
c ; (12a)

g11 = c2 + s2h̃2
z ; (12b)

g01 = −2[c sin(β) + s cos(β)h̃z]
√

g00. (12c)

We now examine the forms of n0
ν and n1

ν to determine how
much information can be extracted about the state and the
process. It can be seen that just one type of measurement,
either �̂0

ν or �̂1
ν , is sufficient to access the elements ρ00, ρ01,

and ρ11 of the density matrix in Eq. (1a). Inspection of the
coefficients f01 and g01 shows that the system of equations
can also be solved for the elements hc and hz in the unitary in
Eq. (5). Further inspection reveals that the system of equations
can only be solved for β = φ − γ : Only if the phase φ is
known, can the complete state be reconstructed; similarly,
only if the phase γ is known, can the complete unitary be
reconstructed.

We now define a set of measurement statistics 
 ⊆
{n0

ν1
,n0

ν2
. . . ,n1

ν1
,n1

ν2
. . . } and a set of unknown parameters

� ⊆ {ρ00,ρ01,ρ11,hz,hc,β}. Determining whether the set of
equations in (9) and/or (11), parametrized by 
, will be
invertible for � is a standard problem of analysis [17]. This
occurs when the Jacobian, i.e., the determinant of the Jacobian
matrix, is nonzero,

J = det

(
∂


∂�

)
	= 0 . (13)
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(a) (c) (d)(b)

FIG. 1. (Color online) The Bloch vectors �vρ̂ and �vĜ, given in Eq. (2), shown on (a) the Bloch sphere and (b) a cross section of the Bloch
sphere. The unitary operation Ûν , shown in Eq. (5), can be thought of as either (c) rotating �vρ̂ about �vĜ or (d) rotating the reference frame about
�vĜ in the opposite direction.

It is important to mention that when the inversion is per-
formed in practice, errors will be present in the measurement
statistics. For “small” values of the Jacobian, the inversion
might not always be completely meaningful. The study of
errors is important and will need to be done on a case-by-case
basis, but lies outside the scope of this paper.

An appropriate set of different realizations of one of
the projectors �̂

j
ν that satisfies the invertibility condition in

Eq. (13) can be used to construct a set of equations invertible
for the unknown parameters, thereby realizing quantum state
tomography of the two-level system and/or quantum process
tomography of the unitary.

In the remainder of this section, we discuss several scenar-
ios, beginning with a completely characterized unitary before
extending the formalism to include unknown parameters in the
generator Ĝ.

A. Completely characterized unitary

We first consider the familiar scenario where one has
complete knowledge and control over the unitary operation.
Given the ability to measure in one particular basis, one can
make measurements in any arbitrary basis {|0ν〉,|1ν〉}.

As an illustrative example, we consider the four measure-
ments introduced by White et al. [18] which correspond to the
four measurement operators

�̂0 = |0〉〈0|; (14a)

�̂1 = |1〉〈1|; (14b)

�̂1
ν = Ûν |1〉〈1|Û †

ν ; for ν = i, ii, (14c)

where the unitary operations are given by

Ûi = Û(0,π/2,0); (15a)

Ûii = Û(0,π/2,π/2), (15b)

and Û(hz,hc,φ) is defined in Eq. (5). The Jacobian for this
scenario is given by

JA = det

(
∂
(
n0,n1,n1

i ,n
1
ii

)
∂(ρ00,ρ01,ρ11,γ )

)
= ρ01. (16)

As long as ρ̂ has nonzero coherence, we can solve for all
unknown parameters � = {ρ00,ρ01,ρ11,γ }. If ρ01 = 0, the
phase γ will be undefined; however, the system of equations

will still be invertible as in this situation γ will be absent from
the expressions for n

j
ν .

B. One unknown parameter in the unitary

We now consider a scenario where Ĝ contains one
unknown parameter. To solve for this additional parameter,
we require one additional measurement. We consider the
scenario introduced by Brańczyk et al. [5] (with some minor
adjustments), which requires hz = 0, and hc = mcλc where
mc is a controllable parameter and λc is unknown. We also
require the ability to control φ. Such a physical scenario can
be realized when a polarization encoded qubit passes through
mc wave plates of unknown retardance λc at an orientation
specified by φ.

Under these conditions, we construct five measurement
operators:

�̂1 = |1〉〈1|; (17a)

�̂1
ν = Ûν |1〉〈1|Û †

ν ; for ν = i, ii, iii, iv, (17b)

where the unitary operations are given by

Ûi = Û(0,λc,0); (18a)

Ûii = Û(0,2λc,0); (18b)

Ûiii = Û(0,λc,π/2); (18c)

Ûiv = Û(0,2λc,π/2), (18d)

and Û(hz,hc,φ) is defined in Eq. (5).
The Jacobian for this scenario is given by

JB = det

(
∂
(
n1,n1

i ,n
1
ii,n

1
iii,n

1
iv

)
∂(ρ00,ρ01,ρ11,λc,γ )

)
(19)

= 64ρ2
01 sin6

(
λc

2

)
cos4

(
λc

2

)
× (sin(γ ) − cos(γ )). (20)

JB will be equal to zero in the following circumstances:

ρ01 = 0; (21a)

λc = 0; (21b)

λc = π/2; (21c)

γ = π/4, (21d)

and therefore the transformation will not be invertible. Let
us examine each circumstance individually. The case where
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ρ01 = 0 was discussed in the previous section. When λc =
0, we never change the measurement basis and thus trivially
nothing can be learned about the state except for the value
of ρ00. If λc = π , then Ûii = Ûiv, leading to redundancy in the
measurement statistics thus providing insufficient information.
To understand the last condition, one must look at the explicit
forms of n1

i and n1
ii, which differ from n1

ii and n1
iv by sin(γ ) →

cos(γ ), respectively. When γ = π/4, sin(γ ) = cos(γ ), once
again leading to redundancy in the measurement statistics.

In all other circumstances, the system will be solvable for
the unknown parameters in the density matrix and the unitary.

C. Two unknown parameters in the unitary

We now introduce an additional unknown parameter in the
generator, such that hz = mzλz where mz is controllable and
λz is unknown. We can build upon the results of the previous
section, where we had implicitly set mz = 0, and now make an
additional measurement given by the measurement operator,

�̂1
v = Ûv|1〉〈1|Û †

v , (22)

where the unitary operation is given by

Ûv = Û(λz,0,0). (23)

The Jacobian for this scenario is given by

JC = ∂n1
v

∂λz

JB = 6λz
2ρ00JB, (24)

where JB is defined in Eq. (20). The Jacobian adopts this
simple form because JC is the upper block triangular where
the first block is identical to JB and the other block is simply
given by ∂n1

z/∂λz. As long as JB 	= 0, and λz 	= 0 in the sixth
measurement, the system will be solvable for the unknown
parameters in the density matrix and the unitary.

D. Uniqueness of the solution

The solutions to Eqs. (9) and (11) are not always unique. As
can be seen from Eqs. (10) and (12), the measurement statistics
do not depend on φ and γ independently but rather on their
difference β = φ − γ . Given solutions for γ and φ, there are
other solutions γ + η, φ + η that will give rise to the same
measurement statistics. Another way to see this is to notice
that one can perform a nontrivial unitary transformation,

V̂(η) = |0〉〈0| + eiη|1〉〈1|, (25)

to the state ρ̂ ′ and to the generator of rotations Ĝ that
leaves the measurement statistics untouched. To this end,
notice that V̂ has no effect on the unrotated projectors, i.e.,
V†|i〉〈i|V = |i〉〈i| for i = 0,1. Because of this identity, it
follows that Eqs. (9) and (11) can be rewritten as

ni
ν = tr

(
ρ̂ ′�̂i

ν

)
(26)

= tr(ρ̂ ′Ûν

†|i〉〈i|Ûν) (27)

= tr(ρ̂ ′Ûν

†V̂†|i〉〈i|V̂Ûν). (28)

One can insert the identity I = V̂V̂† = V̂†V̂ on both sides
of ρ ′ and use the cyclical property of the trace to write

ni
ν = tr(ρ̂ ′Ûν

†|i〉〈i|Ûν), (29)

where

ρ̂ ′ = V̂ ρ̂(ρ00,ρ11,ρ01,γ )V̂† (30a)

= ρ̂(ρ00,ρ11,ρ01,γ + η), (30b)

and

Ûν = V̂ exp (−iĜ(hz,hc,φ))V̂† (31a)

= exp (−iĜ(hz,hc,φ + η)). (31b)

Thus, the multiple solutions found when Eqs. (9) and
(11) are inverted are related by a simple unitary of the form
(25). One simple way to make the inversion single-valued
is to demand that the generator of rotations Ĝ has positive
off-diagonal elements, which is equivalent to applying V̂(−φ).
Finally, notice that if one only demands real off-diagonal
elements then one will find two possible solution sets that
are related by the unitary V̂(π ) = σ̂z as was noticed in [5].

III. GENERALIZATION TO MULTIDIMENSIONAL
SYSTEMS

Now that we have established the formalism for two-
level systems, the generalization to multidimensional systems
follows readily. One applies the same procedure: (1) Write
down the unitary being applied to the state, making note of
parameters that are unknown as well as parameters that are
controllable; (2) construct a set of measurement operators
analogous to those in Eqs. (17) using different realizations of
the unitary, achieved with different settings of the controllable
parameters; (3) check that the measurement operators are
suitable by calculating the Jacobian in Eq. (13); (4) collect
measurement statistics from measurements given by the
measurement operators in step 2; (5) solve for the unknown
parameters using one of a variety of methods, including
simple linear inversion, least-squares estimation or the popular
maximum likelihood estimation method [19] which was used
in the original realization of SCT in [5] and gave excellent
results in the experiment. Alternatively, one of a growing
number of new techniques [20–29] can be used.

The above procedure may be simplified if the multidimen-
sional system supports interaction Hamiltonians that generate
all combinations of pairwise coupling between the eigenstates,
as illustrated for a three-level atomic system in Fig. 2(a). In this
situation, each measurement operator can be constructed from
a two-dimensional unitary operation, and the SCT procedure

(a) (b)

FIG. 2. (Color online) Representation of two qudit systems with
d = 3. In (a) each level can be coupled to each other level by the
Hamiltonian interactions represented by the blue arrows. In (b) the
two levels |1〉 and |2〉 cannot be coupled directly but can still interact
to second order through the level |0〉.
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can be broken down into performing a succession of two-qubit
SCT on all possible pairs of levels in the system, denoted by
ovals in Fig. 2(a).

On the other hand it might happen that there are eigenstates
that are not directly coupled, but are coupled to another
common state. This is the case illustrated in Fig. 2(b). In this
scenario, pairwise qubit tomography will not be sufficient.
Nevertheless, it is still possible to gain complete information
about the state and, in particular, the value of the coherences
between the levels that are not directly coupled, by employing
ancillary levels such as the |0〉 state in Fig. 2(b). This will
be demonstrated in the next section, for a three-level atomic
system in the V configuration.

We note that the general idea of how to perform quantum
state tomography of d-level systems has been studied by Thew
et al. [30].

IV. EXAMPLE: V-TYPE THREE-LEVEL SYSTEM

In this section we provide an example of how to extend
SCT to the case of a three-level system in which two of the
levels are not directly coupled by the Hamiltonian that is used
to perform changes in the measurement basis [Fig. 2(b)].
We consider a concrete physical system; nevertheless, the
conclusions reached in the following subsections will be
independent of the implementations that we outline here.
Tomographic reconstruction of three-dimensional systems,
given completely characterized unitary operations, has been
considered in Refs. [31–33]. Here we consider the case where
the unitary is not completely characterized.

A. Description of the system

We consider an atomic or molecular three-level system with
a nondegenerate V-type energy ladder with excited states |1〉
and |2〉 and ground state |0〉. The matter Hamiltonian is given
by

Ĥ0 = h̄ω1|1〉〈1| + h̄ω2|2〉〈2|, (32)

where the energy of the ground state |0〉 has been set to zero.
The system will couple to the electromagnetic field via the
transition dipole moment operator d̂ , where

�d11 = �d22 = �d12 = �d21 = 0; (33a)
�d01 = �d∗

10 	= 0; (33b)

�d02 = �d∗
20 	= 0. (33c)

The light-matter interaction will be given in the dipole
approximation by

Ĥlm(t) = d̂ · �E(t), (34)

where �E(t) = �E+(t) + �E−(t) is the electric field. In particular,
it is assumed that the field is in a superposition of two
continuous-wave lasers that are each resonant with the |0〉 →
|1〉 and |0〉 → |2〉 transitions:

�E+(t) = E1e
iθ1e−iω1t �u1 + E2e

iθ2e−iω2t �u2, (35)

where Ei and θi are the controllable amplitudes and phases
of the fields, respectively, �ui are their polarizations, and ωi

their frequencies. Without loss of generality, we take Ei to be

real. In the “bare” basis of the V-type system, the light-matter
interaction Hamiltonian is

Ĥlm(t) = �d · �E(t) (36)

= ( �d10|1〉〈0| + �d20|2〉〈0| + H.c.) · �E(t). (37)

Making the rotating wave approximation and going into the
interaction picture with respect to the Hamiltonian Ĥ0, the
interaction Hamiltonian is given by

ĤI(t)= (E1e
iθ1 �d10 · �u1 + E2e

iθ2ei�21t �d10 · �u2)|1〉〈0|
+ (E1e

iθ1ei�12t �d20 · �u1+E2e
iθ2 �d20 · �u2)|2〉〈0| + H.c.,

(38)

where �ij = ωi − ωj . We now calculate the generator of
rotations by assuming that the field is turned on at time −t/2
and turned off at time t/2:

Ĝ = 1

h̄

∫ t/2

−t/2
dt ′ĤI(t

′) = E1te
iθ1 �d10 · �u1|1〉〈0|

+E2te
iθ2 �d20 · �u2|2〉〈0| + H.c., (39)

where we also assumed that t � �−1
12 such that

∫ t/2
−t/2 ei�12t =

2tsinc(�12t/2) ≈ 0. We can write the generator as

Ĝ = h1

2
eiφ1 |1〉〈0| + h2

2
eiφ2 |2〉〈0| + H.c., (40)

where

hj = 2Ej t | �dj0 · �uj |; (41a)

φj = θj + arg( �dj0 · �uj ). (41b)

Equation (40) can also be written in the ordered basis
{|0〉,|1〉,|2〉} as

G = 1

2

⎛
⎜⎝

0 e−iφ1h1 e−iφ2h2

eiφ1h1 0 0

eiφ2h2 0 0

⎞
⎟⎠ . (42)

The matrix above has both zero trace and zero determinant,
and therefore the eigenvalues take the very simple form
spec(Ĝ) = {−

√
h2

1 + h2
2/2,0,

√
h2

1 + h2
2/2}.

In the more general case where the electric fields in (35)
are not monochromatic but are time-dependent pulses, and
assuming that their temporal duration is much longer than
1/�12, one finds that

ĤI(t) = E1(t)eiθ1 �d10 · �u1|1〉〈0|
+E2(t)eiθ2 �d20 · �u2|2〉〈0| + H.c. (43)

The propagator is now strictly given by
T exp (− i

h̄

∫
dtHI(t)) where T is the time ordering operator.

Given a Hamiltonian ĤI(t) that commutes with itself at
all times, the propagator reduces to the simpler form
exp (− i

h̄

∫
dtHI(t)). We calculate the commutator of ĤI(t) at

two different times t and t ′:

[ĤI(t),ĤI(t
′)] = �d10 · �u1( �d20 · �u2)∗ei(θ1−θ2)(E1(t)E2(t ′)

−E1(t ′)E2(t))|1〉〈2| − H.c., (44)

where we note that Ej (t) is real. The condition that
[ĤI(t),ĤI(t ′)] = 0 can be reached if either E1(t) = 0,
E2(t) = 0 or E1(t) = E2(t) which are precisely the conditions
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considered in the remainder of this paper. As long as these
conditions are met and the width of the pulses is much
longer than 1/�12, one can safely disregard the time ordering
operator T .

B. Measurement statistics

We now calculate the measurement statistics associated
with projection onto the two excited states of the system. A
simple way of parametrizing the density matrix of a three-level
system is as follows:

ρ̂ =

⎛
⎜⎝

ρ00 ρ01e
−iγ01 ρ02e

−iγ02

ρ01e
iγ01 ρ11 ρ12e

−iγ12

ρ02e
iγ02 ρ12e

iγ12 ρ22

⎞
⎟⎠ . (45)

Note that unlike the qubit case, the constraints that the set
of numbers ρij will have to satisfy so that ρ̂ is a non-negative
linear operator are by no means trivial [34,35].

To perform state tomography on the unknown state ρ̂,
we evolve it according to Ûν = exp(−iĜ), where we assume
that the interaction time is short compared with the rate of
spontaneous emission. After the evolution is complete, the
detection of a spontaneously emitted photon of frequency ω1

or ω2 constitutes a projective measurement of ρ̂ given by the
projectors,

�̂1
ν = |1ν〉〈1ν |; �̂2

ν = |2ν〉〈2ν |, (46)

where |jν〉 = Ûν |j 〉. The statistics associated with measuring
�̂1

ν are given by

n1
ν = tr

(
ρ̂ ′�̂1

ν

) =
2∑

i�j

fijρij , (47)

where ρ̂ ′ = N ρ̂ and the coefficients are given by

f00 = h̃2
1s

2; (48a)

f11 = (
h̃2

1c + h̃2
2

)2
; (48b)

f22 = h̃2
1h̃

2
2(c − 1)2; (48c)

f01 = 2 sin (β01)
√

f00f11; (48d)

f02 = 2 sin (β02)
√

f00f22; (48e)

f12 = 2 cos (β12)
√

f11f22, (48f)

where

h̃j = hj/�; (49a)

c = cos(�/2), (49b)

s = sin(�/2), (49c)

� =
√

h2
1 + h2

2, (49d)

β0j = φj − γ0,j ; (49e)

β12 = γ1,2 + φ1 − φ2. (49f)

We note that there is a nonlinear relationship between the
measurement statistics n1

ν and the parameters hi and βjk .
Similarly, the statistics associated with measuring �̂2

ν are given

by

n2
ν = tr

(
ρ̂ ′�̂2

ν

) =
2∑

i�j

gijρij , (50)

where

g00 = h̃2
2s

2; (51a)

g11 = h̃2
1h̃

2
2(c − 1)2; (51b)

g22 = (
h̃2

1 + h̃2
2c

)2
; (51c)

g01 = 2 sin(β01)
√

g00g11; (51d)

g02 = 2 sin(β02)
√

g00g22; (51e)

g12 = 2 cos(β12)
√

g11g22. (51f)

From the form of n1
ν and n2

ν , it can be seen that just one type
of measurement, either �̂1

ν or �̂2
ν , is sufficient to access all the

elements of the density matrix in Eq. (45). We note that, as in
the qubit case, the equations are only invertible for βij , but not
for the individual quantities γij and φk . Only if the phases φk

are known can the complete state be reconstructed. Similarly,
only if the phases γij are known can the complete unitary be
reconstructed.

Different realizations of one of the projectors �̂
j
ν can be

used to construct a set of equations invertible for the unknown
parameters of the density matrix, thereby realizing quantum
state tomography of the three-level system and/or quantum
process tomography of the unitary.

Physically, both fields which couple |1〉 and |2〉 to the
ground state must be present simultaneously in order to access
all elements of the density matrix. This is to be expected since
the only way to have a coherent interaction between the two
excited states in a V-type system is by going through the ground
state—possible only when both fields are present. This can
also be seen from the equations above, since f12 and g12 are
dependent on f11f22 and g11g22, respectively.

C. Unknown transition dipole moments

In this section, we demonstrate how self-calibrating to-
mography can be performed on a V-type three-level system
with unknown transition dipole moments �dj0. Without loss of
generality, we assume that the transition dipole moments are
real and positive. We can therefore parametrize the generator
in Eq. (40) as follows:

hj = mjλj ; (52a)

φj = θj , (52b)

where mj = 2Ej t is a controllable parameter proportional
to the square of the intensity of the fields, λj = | �dj0 · �uj | is
unknown, and θj is the controllable phase of each field.

To demonstrate the process of constructing the appropriate
measurement operators, we break the problem up into three
parts. The first part consists of treating one ground-excited
state pair as a two-level system; this gives five measurement
operators analogous to the qubit case discussed above. The
second part consists of doing the same for the other ground-
excited state pair; this gives four additional measurement
operators since the ground-state population parameter is
already obtained from the first part. The third part consists of
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cleverly picking two more operators to solve for the coherences
between the two excited states.

The first set of measurement operators are given by

�̂1 = |1〉〈1|; (53a)

�̂1
ν = Ûν |1〉〈1|Û †

ν ; for ν = i, ii, iii, iv, (53b)

where the unitary operations are given by

Ûi = Û(λ1,0,0,0); (54a)

Ûii = Û(λ1,0,0,π/2); (54b)

Ûiii = Û(2λ1,0,0,0); (54c)

Ûiv = Û(2λ1,0,0,π/2), (54d)

where

Û(h1,h2,φ1,φ2) = e−iĜ(h1,h2,φ1,φ2), (55)

and G(h1,h2,φ1,φ2) is defined in Eq. (40). The second set of
measurements is given by

�̂2
ν = Ûν |2〉〈2|Û †

ν ; for ν = v, vi, vii, viii, (56)

where

Ûv = Û(0,λ2,0,0); (57a)

Ûvi = Û(0,λ2,0,π/2); (57b)

Ûvii = Û(0,2λ2,0,0); (57c)

Ûviii = Û(0,2λ2,0,π/2). (57d)

The third set will need to provide information about the
coherences between the two excited states. For this, we require
both fields to be present simultaneously.

�̂1
ν = Ûν |1〉〈1|Û †

ν ; for ν = ix, x, (58)

where

Ûix = Û(λ1,λ2,0,0); (59a)

Ûx = Û(λ1,λ2,0,0 + π/2). (59b)

To verify that the measurement statistics n
j
ν = tr(�̂j

ν ρ̂),
given by the above operators, generate a set of equations
invertible for the unknown parameters, we calculate the
Jacobian defined in Eq. (13). We note that the three sets of
inversions are independent of each other. Therefore, as long
as one can retrieve, {ρ00,ρ11,ρ01,λ1,γ1} from the first set of
measurements in Eq. (53); {ρ22,ρ02,λ2,γ2} from the second
set in Eq. (56); and {ρ12,γ12} from the third set in Eq. (58), the
inversion is possible.

Equivalently, one can compute the Jacobian matrix and
notice that it is the upper block triangular where the first 5 × 5
block corresponds to (53), the second 4 × 4 block corresponds
to (56), and the final 2 × 2 block corresponds to (58). This is
demonstrated schematically in Fig. 3. Explicitly the Jacobians
for the blocks are

J1 = 64 sin6

(
λ1

2

)
cos4

(
λ1

2

)
ρ2

01

× (sin(γ01) − cos(γ01)); (60a)

J2 = 2 sin4(λ2) cos(λ2)ρ2
02(cos(γ02) − sin(γ02)); (60b)

J3 = −16λ2
1λ

2
2 sin4

(
�
4

)
ρ12

(
λ2

1 + λ2
2 cos

(
�
2

))2

�8
. (60c)

FIG. 3. Structure of the Jacobian matrix for the V-type three-
level system. White squares indicate a null element of the matrix.
Black lines denote the three blocks associated with J1,J2, and J3.
Gray nonzero elements outside the black boundaries signify that each
block can only be solved if the blocks before it have already been
solved.

Given the block structure of the matrix, the Jacobian of the
whole transformation is simply

J = J1J2J3. (61)

The analysis of the singularities of the quantities above (i.e.,
when Ji = 0) is completely analogous to that for the qubit
case. In fact, J1 = JB in Eq. (20) if γ01 → γ and λ1 → λc.
We note that in all cases, the Jacobians are proportional to the
coherences simply because the phases γi,j are undefined if the
coherences ρi,j = 0.

If the Jacobian in Eq. (61) is nonzero, we can perform
complete quantum state tomography on the three-level system
and partial quantum process tomography on the unitary,
solving for the unknown transition dipole moments of the
three-level system.

We also note that the measurement operators presented
here are by no means unique. Other unitaries, such as those
that always contain both fields, may be preferable from an
experimental perspective. The advantage of the above choice
of operators is twofold. First, it demonstrates that the task
of constructing measurement operators for larger-dimensional
systems can largely be broken up into the less daunting task of
performing SCT on two-level systems. Second, it allows for a
more efficient computation of the Jacobian to test the choice
of operators.

This analysis can be extended to systems with more
complex coupling structures. One can use perturbation theory
to show that if two levels are coupled by d ancillary
levels, an expansion to order d + 1 of the propagator will
be able to extract the coherence between those levels. For
the case of d = 1 this reduces to the qutrit case discussed
here.
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V. DISCUSSION AND CONCLUDING REMARKS

We have developed a full theoretical formalism for quantum
tomography that treats unknown parameters in the state
and unitary process on an equal footing. This treatment is
applicable to arbitrary-dimensional systems, where the unitary
operations used to change the measurement basis are not
completely characterized.

To date, the duality between unknown parameters in the
state and process has been considered in only a handful
of publications; characterization of states and processes is
still largely treated independently. We hope that the ideas
presented in this paper will provide avenues toward a
unified treatment that simplifies experiments by eliminating
the need for prior calibration, as well as permits char-
acterization of quantum states where state tomography is

currently not possible due to lack of well-characterized unitary
operations.

It is important to note that our formalism applies to unitary
evolution. This is a valid assumption for some systems, such as
free-space linear-optical experiments or atomic systems that
are well isolated from their environment. However, in general,
the process will be nonunitary and described by a positive
map. This generalization will be discussed in upcoming
work.

ACKNOWLEDGMENTS

This work was funded by the Defense Advanced Research
Projects Agency (QuBE) program and Natural Sciences and
Engineering Research Council of Canada. The authors thank
Hubert de Guise for helpful comments on the manuscript.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
2000).

[2] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[3] U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995).
[4] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys.

Rev. A 64, 052312 (2001).
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