2,957 research outputs found

    Near-horizon modes and self-adjoint extensions of the Schroedinger operator

    Full text link
    We investigate the dynamics of scalar fields in the near-horizon exterior region of a Schwarzschild black hole. We show that low-energy modes are typically long-living and might be considered as being confined near the black hole horizon. Such dynamics are effectively governed by a Schroedinger operator with infinitely many self-adjoint extensions parameterized by U(1)U(1), a situation closely resembling the case of an ordinary free particle moving on a semiaxis. Even though these different self-adjoint extensions lead to equivalent scattering and thermal processes, a comparison with a simplified model suggests a physical prescription to chose the pertinent self-adjoint extensions. However, since all extensions are in principle physically equivalent, they might be considered in equal footing for statistical analyses of near-horizon modes around black holes. Analogous results hold for any non-extremal, spherically symmetric, asymptotically flat black hole.Comment: 10 pages, 1 fig, contribution submitted to the volume "Classical and Quantum Physics: Geometry, Dynamics and Control. (60 Years Alberto Ibort Fest)" Springer (2018

    A Matrix Model for QCD: QCD Colour is Mixed

    Full text link
    We use general arguments to show that coloured QCD states when restricted to gauge invariant local observables are mixed. This result has important implications for confinement: a pure colourless state can never evolve into two coloured states by unitary evolution. Furthermore, the mean energy in such a mixed coloured state is infinite. Our arguments are confirmed in a matrix model for QCD that we have developed using the work of Narasimhan and Ramadas and Singer. This model, a (0+1)(0+1)-dimensional quantum mechanical model for gluons free of divergences and capturing important topological aspects of QCD, is adapted to analytical and numerical work. It is also suitable to work on large NN QCD. As applications, we show that the gluon spectrum is gapped and also estimate some low-lying levels for N=2N=2 and 3 (colors). Incidentally the considerations here are generic and apply to any non-abelian gauge theory.Comment: 16 pages, 3 figures. V2: comments regarding infinite energy and confinement adde

    Spontaneous Breaking of Lorentz Symmetry and Vertex Operators for Vortices

    Full text link
    We first review the spontaneous Lorentz symmetry breaking in the presence of massless gauge fields and infraparticles. This result was obtained long time ago in the context of rigorious quantum field theory by Frohlich et. al. and reformulated by Balachandran and Vaidya using the notion of superselection sectors and direction-dependent test functions at spatial infinity for the non-local observables. Inspired by these developments and under the assumption that the spectrum of the electric charge is quantized, (in units of a fundamental charge e) we construct a family of vertex operators which create winding number k, electrically charged Abelian vortices from the vacuum (zero winding number sector) and/or shift the winding number by k units. In particular, we find that for rotating vortices the vertex operator at level k shifts the angular momentum of the vortex by k \frac{{\tilde q}}{q}, where \tilde q is the electric charge of the quantum state of the vortex and q is the charge of the vortex scalar field under the U(1) gauge field. We also show that, for charged-particle-vortex composites angular momentum eigenvalues shift by k \frac{{\tilde q}}{q}, {\tilde q} being the electric charge of the charged-particle-vortex composite. This leads to the result that for \frac{{\tilde q}}{q} half-odd integral and for odd k our vertex operators flip the statistics of charged-particle-vortex composites from bosons to fermions and vice versa. For fractional values of \frac{{\tilde q}}{q}, application of vertex operator on charged-particle-vortex composite leads in general to composites with anyonic statistics.Comment: Published version, 15+1 pages, 1 figur

    Localization in the Rindler Wedge

    Get PDF
    One of the striking features of QED is that charged particles create a coherent cloud of photons. The resultant coherent state vectors of photons generate a non-trivial representation of the localized algebra of observables that do not support a representation of the Lorentz group: Lorentz symmetry is spontaneously broken. We show in particular that Lorentz boost generators diverge in this representation, a result shown also in [1] (See also [2]). Localization of observables, for example in the Rindler wedge, uses Poincar\'e invariance in an essential way [3]. Hence in the presence of charged fields, the photon observables cannot be localized in the Rindler wedge. These observations may have a bearing on the black hole information loss paradox, as the physics in the exterior of the black hole has points of resemblance to that in the Rindler wedge.Comment: 11 page

    Spontaneous Lorentz Violation: The Case of Infrared QED

    Get PDF
    It is by now clear that infrared sector of QED has an intriguingly complex structure. Based on earlier pioneering works on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1)U(1) charge group of QED to the "Sky" group incorporating the known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality. There it was shown that the "Sky" group is generated by the algebra of angle dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle dependent fermion mass modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content too.Time dilation formulae for decays should also get corrections. We speculate that these effects could be measured possibly in muon decay experiments.Comment: 18+1 pages, revised version, expanded discussion in section 5
    corecore