67 research outputs found

    Effects of Four Host Plants on Biology and Food Utilization of the Cutworm, Spodoptera litura

    Get PDF
    Effects of four host plants, tobacco, Chinese cabbage, cowpea and sweet potato, on larval and pupal development and survival, and longevity and fecundity of adults of Spodoptera litura (F) (Lepidoptera: Noctuidae), were studied under laboratory conditions (26° C, 60–80% RH), as was the utilization of the four host plants and adaptation on tobacco. All of the biological parameters included in the study were affected by the host plants. In a choice test, S. litura females oviposited most on Chinese cabbage, least on tobacco, and intermediate on cowpea and sweet potato. S. litura larvae developed differently on the four host plants, from shortest to longest in the following order: Chinese cabbage, cowpea, sweet potato, and tobacco. Pupal development was shorter on cowpea than on the other three host plants, and males generally developed longer than females. More females than males were found among emerged adults, and male adults lived 1–2 d longer than females. Larvae survived best on cowpea (81.6%), followed by Chinese cabbage (75.5%), then sweet potato (66.1%), and worst on tobacco (49.2%). Pupal survival rates were relatively high (91.4 – 95.9%) in all four host plant treatments, although that on sweet potato was lower than those on the other three host plants. Pupal weights on tobacco and sweet potato were similar, but both were lower than those on Chinese cabbage and cowpea. Generally, male pupae weighed less than female pupae. Numbers of eggs oviposited by female S. litura were highest on sweet potato, followed by those on cowpea, Chinese cabbage, and lowest on tobacco. Relative food consumption rate was highest on sweet potato, followed by that on cowpea, Chinese cabbage, and lowest on tobacco. In contrast, S. litura larvae that fed on tobacco had higher efficiency of conversion of digested food, highest efficiency of conversion of ingested food, and lowest approximate digestibility as compared with larvae that fed on other host plants. The potential causes for S. litura outbreaks on tobacco are discussed

    Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>R </it>locus controls the color of pigmented soybean (<it>Glycine max</it>) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (<it>iRT</it>) and brown (<it>irT</it>) soybean (<it>Glycine max</it>) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase (<it>UGT78K1</it>) from the seed coat of black (<it>iRT</it>) soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether <it>UGT78K1 </it>was overexpressed with anthocyanin biosynthesis in the black (<it>iRT</it>) seed coat compared to the nearly-isogenic brown (<it>irT</it>) tissue.</p> <p>In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system.</p> <p>Results</p> <p>Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (<it>iRT</it>) or the brown (<it>irT</it>) seed coat. A global analysis of gene expressions identified <it>UGT78K1 </it>and 19 other anthocyanin, (iso)flavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis <it>in vitro </it>and expression profiles of the corresponding genes were shown to parallel anthocyanin biosynthesis during black (<it>iRT</it>) seed coat development.</p> <p>Conclusion</p> <p>Metabolite composition and gene expression differences between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats are far more extensive than previously thought. Putative anthocyanin, proanthocyanidin, (iso)flavonoid, and phenylpropanoid isogenes were differentially-expressed between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats, and <it>UGT78K2 </it>and <it>OMT5 </it>were validated to code UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase and anthocyanin 3'-<it>O</it>-methyltransferase proteins <it>in vitro</it>, respectively. Duplicate gene copies for several enzymes were overexpressed in the black (<it>iRT</it>) seed coat suggesting more than one isogene may have to be silenced to engineer seed coat color using RNA interference.</p

    MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME)

    Get PDF
    Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients.miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets.Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology.This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function

    T-ALL and thymocytes: a message of noncoding RNAs

    Full text link

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Emphysema extent on computed tomography is a highly specific index in diagnosing persistent airflow limitation: a real-world study in China

    No full text
    Ting Cheng,1&ndash;3 Yong Li,1,3 Shuai Pang,1 Huan Ying Wan,1,3 Guo Chao Shi,3,4 Qi Jian Cheng,1,3 Qing Yun Li,3,4 Zi Lai Pan,5 Shao Guang Huang3,4 1Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2School of Public Health, Fudan University, Shanghai, China; 3Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 4Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 5Department of Radiology, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China Objective: The diagnostic value of emphysema extent in consistent air flow limitation remains controversial. Therefore, we aimed to assess the value of emphysema extent on computed tomography (CT) on the diagnosis of persistent airflow limitation. Furthermore, we developed a diagnostic criterion for further verification.Materials and methods: We retrospectively enrolled patients who underwent chest CT and lung function test. To be specific, 671 patients were enrolled in the derivation group (Group 1.1), while 479 patients were in the internal validation group (Group 1.2). The percentage of lung volume occupied by low attenuation areas (LAA%) and the percentile of the histogram of attenuation values were calculated.Results: In patients with persistent airflow limitation, the LAA% was higher and the percentile of the histogram of attenuation values was lower, compared with patients without persistent airflow limitation. Using LAA% with a threshold of -950 HU &gt;1.4%&nbsp;as the criterion, the sensitivity was 44.3% and 47.2%, and the specificity was 95.2% and 95.7%, in Group 1.1 and Group 1.2, respectively. The specificity was influenced by the coexistence of interstitial lung disease, pneumothorax, and post-surgery, rather than the coexistence of pneumonia, nodule, or mass. Multivariable models were also developed.Conclusion: The emphysema extent on CT is a highly specific marker in the diagnosis of persistent airflow limitation. Keywords: computed tomography, lung function test, emphysema, persistent airflow limitatio
    • 

    corecore