41 research outputs found

    Morphological and Physiological Changes in Sedum spectabile during Flower Formation Induced by Photoperiod

    Get PDF
    Sedum spectabile is an ornamental herbaceous perennial considered as a long-day plant. Varying levels of hormones and sugars possibly affect flower bud formation. This study aimed to determine the changes in endogenous hormones, sugars, and respiration levels in leaves and in apical buds. In addition, the current research was also conducted to observe the morphological changes during the induction, initiation and development of flower buds. Results showed that the periods of floral induction, initiation and development of S. spectabile were the period from 0 d to 1 d, 2 d to 10 d and after 11 d respectively under long day of 20 hours. High zeatin level in apical buds was conducive to floral induction; the increasing levels of gibberrelin and indole acetic acid favor floral initiation; floral development was regulated by mutually synergistic and antagonistic relationships of hormones. The total starch content in leaves remarkably decreased during floral induction. Moreover, soluble sugar content increased and reached the maximum level at 20 d of the treatment period. Afterward, soluble sugar content declined rapidly and was probably transported to the apical buds for rapid floral development. Furthermore, the total respiration of leaves maintained an upward trend; the cytochrome pathway also maintained an increasing trend after the plants were treated for 20 d. Such changes may favour the morphological differentiation of apical buds in floral development

    Effects of Different Shading Rates on the Photosynthesis and Corm Weight of Konjac Plant

    Get PDF
    To study the effects of shading level on the photosynthesis and corm weight of konjac plant, the chlorophyll fluorescence parameters, daily variation of relative electron transport rate (rETR), net photosynthetic rate (Pn), and corm weight of konjac plants under different treatments were measured and comparatively analyzed through covered cultivation of biennial seed corms with shade nets at different shading rates (0%, 50%, 70%, and 90%). The results showed that with the increase in shading rate, the maximum photochemical efficiency, potential activity, and non-photochemical quenching of photosystem â…¡ (PSâ…¡) of konjac leaves constantly increased, whereas the actual photosynthetic efficiency, rETR, and photochemical quenching of PSâ…¡ initially increased and then decreased. This result indicated that moderate shading could enhance the photosynthetic efficiency of konjac leaves. The daily variation of rETR in konjac plants under unshaded treatment showed a bimodal curve, whereas that under shaded treatment displayed a unimodal curve. The rETR of plants with 50% treatment and 70% treatment was gradually higher than that under unshaded treatment around noon. The moderate shading could increase the Pn of konjac leaves. The stomatal conductance and transpiration rate of the leaves under shaded treatment were significantly higher than those of the leaves under unshaded treatment. Shading could promote the growth of plants and increase corm weight. The comprehensive comparison shows that the konjac plants had strong photosynthetic capacity and high yield when the shading rate was 50%-70% for the area

    Effects of Dual/Threefold Rootstock Grafting on the Plant Growth, Yield and Quality of Watermelon

    Get PDF
    To test the feasibility of multi-rootstock grafting, bottle gourd and pumpkin were used as rootstocks in a comparative analysis of the effects of single, dual, and threefold rootstock grafting on the plant growth, fruit yield, and quality of watermelon. Results showed that different grafts have significant effects on the abovementioned properties. The appropriate dual/threefold rootstock grafting allowed for higher survival rates. The combined rootstock of bottle gourd and pumpkin can enhance the plant growth potential and lower the incidence of wilt. The single fruit weight of the grafted plants with a combined rootstock from bottle gourd and pumpkin was the median of the weights obtained with the pumpkin rootstock and the bottle gourd rootstock. The plot yield of grafted plants with a pumpkin rootstock was higher than that of the plants with a bottle gourd rootstock. The low soluble solids content of the fruit grafted with a pumpkin rootstock had relatively high acidity, which could be improved by adding bottle gourd to the rootstock. The vitamin C content of the grafted fruit from the combined bottle gourd and pumpkin rootstock was higher than that of plants grafted with either bottle gourd or pumpkin alone. The subsequent analysis showed that the combined rootstock of bottle gourd and pumpkin has significant or extremely significant interaction effects on the stem diameter, number of leaves, single fruit weight, plot yield, and fruit vitamin C content of the grafted watermelon plants, which probably led to the higher related index values of some of grafting combinations

    Spatial Expression Analysis of Odorant Binding Proteins in Both Sexes of the Aphid Parasitoid Aphidius gifuensis and Their Ligand Binding Properties

    Full text link
    peer reviewedIn China, Aphidius gifuensis is one of the most common endoparasitoids of the green peach aphid Myzus persicae and grain aphid Sitobion miscanthi in the field. Insect odorant-binding proteins (OBPs) play vital roles in odor perception during feeding, host searching, mating and oviposition. In addition, some OBPs are involved in other physiological processes such as gustation and reproduction. In the present study, a comparative antennal transcriptomic analysis was applied between male and female A. gifuensis. The spatial expression patterns among antennae, heads, thoraxes, abdomens and legs of OBPs in both sexes were further profiled. Fifteen AgifOBPs were predicted, and 14 of them were identified by gene cloning, including 12 classic OBPs and 2 min-C OBPs. As expected, all OBPs were mainly expressed at high levels in antennae, heads or legs which are sensory organs and tissues. Finally, ligand binding properties of 2 OBPs (AgifOBP7 and AgifOBP9) were further evaluated. Female leg specifically expressed AgifOBP9 displays a broad and high binding property to aphid alarm pheromones, plant green volatiles and aphid sex pheromones (Ki < 10 μΜ). However, female leg specifically expressed AgifOBP7 displays poor affinity for all tested ligands except CAU-II-11 ((E)-3,7-dimethylocta-2,6-dien-1-yl-2-hydroxy-3-methoxybenzoate), a reported (E)-β-farnesene (EBF) analog with an exceptionally high binding affinity (Ki = 1.07 ± 0.08 μΜ). In summary, we reported the spatial expression pattern of the OBP repertoire in A. gifuensis, and further studied the binding properties of OBP7 and OBP9, which are mainly expressed in female legs, laying the foundation for the dissection of the contribution of OBPs to chemosensation in A. gifuensis.17. Partnerships for the goal

    Functional analysis of odorant-binding proteins for the parasitic host location to implicate convergent evolution between the grain aphid and its parasitoid Aphidius gifuensis.

    Full text link
    peer reviewed(E)-β-farnesene (EBF) is a typical and ecologically important infochemical in tri-trophic level interactions among plant-aphid-natural enemies. However, the molecular mechanisms by which parasitoids recognize and utilize EBF are unclear. In this study, we functionally characterized 8 AgifOBPs in Aphidifus gifuensis, one dominant endo-parasitoid of wheat aphid as well as peach aphid in China. Among which, AgifOBP6 was the only OBP upregulated by various doses of EBF, and it showed a strong binding affinity to EBF in vitro. The lack of homology between AgifOBP6 and EBF-binding proteins from aphids or from other aphid natural enemies supported that this was a convergent evolution among insects from different orders driven by EBF. Molecular docking of AgifOBP6 with EBF revealed key interacting residues and hydrophobic forces as the main forces. AgifOBP6 is widely expressed among various antennal sensilla. Furthermore, two bioassays indicated that trace EBF may promote the biological control efficiency of A. gifuensis, especially on winged aphids. In summary, this study reveals an OBP (AgifOBP6) that may play a leading role in aphid alarm pheromone detection by parasitoids and offers a new perspective on aphid biological control by using EBF. These results will improve our understanding of tri-trophic level interactions among plant-aphid-natural enemies.National Key Research and Development Program of ChinaAgricultural Science and Technology Innovation Progra

    A chromosome-level draft genome of the grain aphid Sitobion miscanthi.

    Full text link
    peer reviewed[en] BACKGROUND: Sitobion miscanthi is an ideal model for studying host plant specificity, parthenogenesis-based phenotypic plasticity, and interactions between insects and other species of various trophic levels, such as viruses, bacteria, plants, and natural enemies. However, the genome information for this species has not yet to be sequenced and published. Here, we analyzed the entire genome of a parthenogenetic female aphid colony using Pacific Biosciences long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly. RESULTS: The final draft genome assembly from 33.88 Gb of raw data was ∼397.90 Mb in size, with a 2.05 Mb contig N50. Nine chromosomes were further assembled based on Hi-C data to a 377.19 Mb final size with a 36.26 Mb scaffold N50. The identified repeat sequences accounted for 26.41% of the genome, and 16,006 protein-coding genes were annotated. According to the phylogenetic analysis, S. miscanthi is closely related to Acyrthosiphon pisum, with S. miscanthi diverging from their common ancestor ∼25.0-44.9 million years ago. CONCLUSIONS: We generated a high-quality draft of the S. miscanthi genome. This genome assembly should help promote research on the lifestyle and feeding specificity of aphids and their interactions with each other and species at other trophic levels. It can serve as a resource for accelerating genome-assisted improvements in insecticide-resistant management and environmentally safe aphid management.National Key R & D Plan of Chin

    Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process

    Get PDF
    A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO + SO ) and free sulfurous acid (FSA, the unionized form: HSO) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10to 2.0 × 10mg HSO-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage

    Kairomonal Effect of Aphid Alarm Pheromones and Analogs on the Parasitoid Diaeretiella rapae

    No full text
    Aphid alarm pheromones, as important semiochemicals, not only mediate behavioral response of aphids, but can also act as kairomones to attract their natural enemies. The sesquiterpene (E)-β-farnesene (EβF), the major alarm pheromone component of most aphid species, has been shown to have a kairomonal effect on the predators of aphids, but other alarm pheromone components, especially the monoterpenes and analogs, are rarely investigated. Here, two EβF analogs were successfully synthesized via the nucleophilic substitution reaction, and we then examined the kairomonal effects of four alarm pheromone components and two EβF analogs on the aphid parasitoid, Diaeretiella rapae. In olfactory bioassays, D. rapae females generally showed no significant behavioral response to these alarm pheromone components and analogs under low concentrations (0.1 μg/μL). Nevertheless, their olfactory response to these compounds gradually enhanced with increasing concentrations. Among the four pheromone components, EβF showed the highest attractive activity, but the parasitoid preferred blends over single compounds. Moreover, the response time decreased as the concentration increased. We confirmed the kairomonal effect of monoterpene alarm pheromone components and their blends, in addition to EβF, on the natural enemies of aphids. This is the first report that the blend of alarm pheromone components and their analogs has a stronger kairomonal effect than do the single components on the natural enemies of aphids. This study contributes to our understanding of the mechanisms involved in the regulation of parasitoid behaviors by kairomones and provides a promising opportunity for designing kairomones for the aphid parasitoid to mediate aphid populations in the field

    Novel (E)-β-Farnesene Analogues Containing 2-Nitroiminohexahydro-1,3,5-triazine: Synthesis and Biological Activity Evaluation

    No full text
    In order to discover novel eco-friendly compounds with good activity for aphid control, (E)-β-farnesene (EβF), the main component of the aphid alarm pheromone, was chosen as the lead compound. By introducing a 2-nitroimino-hexahydro-1,3,5-triazine moiety (abbreviated NHT) to replace the unstable conjugated double bond system of EβF, a series of novel EβF analogues containing the NHT moiety were synthesized via the reaction of substituted NHT rings with (E)-1-chloro-3,7-dimethylocta-2,6-diene. All the compounds were characterized by 1H-NMR, 13C-NMR, IR, and high resolution mass spectroscopy (HRMS). The bioassay results showed that all the analogues displayed different repellent and aphicidal activities against green peach aphid (Myzus persicae). Particularly, the analogue 4r exhibited obvious repellent activity (repellent proportion: 78.43%) and similar aphicidal activity against M. persicae (mortality: 82.05%) as the commercial compound pymetrozine (80.07%). A preliminary structure-activity relationship (SAR) study was also performed, which offered valuable clues for the design of further new EβF analogues

    Studies on insecticidal activities and action mechanism of novel benzoylphenylurea candidate NK-17.

    Get PDF
    Insecticidal activity of NK-17 was evaluated both in laboratory and in field. It was found that the toxicity of NK-17 against S. exigua was 1.93 times and 2.69 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against P. xylostella was 1.36 times and 1.90 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against M. separate was 18.24 times those of hexaflumuron in laboratory, and 5% NK-17 EC at 60 g a.i ha(-1) can control S. exigua and P. xylostella with the best control efficiency of about 89% and over 88% respectively in Changsha and Tianjin in field. The insecticidal mechanism of NK-17 was explored for the first time by utilizing the fluorescence polarization method. NK-17 could bind to sulfonylurea receptor (SUR) of B. germanica with stronger affinity comparing to diflubenzuron and glibenclamide, which suggested that NK-17 may also act on the site of SUR to inhibit the chitin synthesis in insect body and the result can well explain that NK-17 exhibited stronger toxicity against B. germanica than diflubenzuron and glibenclamide in vivo
    corecore