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Abstract 

Sedum spectabile is an ornamental herbaceous perennial considered as a long-day plant. Varying levels of hormones and 

sugars possibly affect flower bud formation. This study aimed to determine the changes in endogenous hormones, sugars, and 
respiration levels in leaves and in apical buds. In addition, the current research was also conducted to observe the 
morphological changes during the induction, initiation and development of flower buds. Results showed that the periods of 

floral induction, initiation and development of S. spectabile were the period from 0 d to 1 d, 2 d to 10 d and after 11 d 

respectively under long day of 20 hours. High zeatin level in apical buds was conducive to floral induction; the increasing levels 
of gibberrelin and indole acetic acid favor floral initiation; floral development was regulated by mutually synergistic and 
antagonistic relationships of hormones. The total starch content in leaves remarkably decreased during floral induction. 
Moreover, soluble sugar content increased and reached the maximum level at 20 d of the treatment period. Afterward, soluble 
sugar content declined rapidly and was probably transported to the apical buds for rapid floral development. Furthermore, the 
total respiration of leaves maintained an upward trend; the cytochrome pathway also maintained an increasing trend after the 
plants were treated for 20 d. Such changes may favour the morphological differentiation of apical buds in floral development. 
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Introduction 

Studies on the flowering mechanism of model plants, such as 
Arabidopsis thaliana and rice, have shown great progress mainly 
by changing photoperiod, light quality, temperature, and other 
conditions to investigate their reactions and flowering 
mechanism (Song et al., 2013). After sensing changes in these 
conditions, plants produce many flower-related substances, 
which are called flowering physiological signals (Bernier et al., 
1993). With many types of flowering physiological signals, plant 
hormones, such as cytokinin, gibberellins (GAs), auxin, etc., 
polyamines, oligosaccharins, zearalenone and other 
physiologically active substances, have been determined. 
Moreover, sugars, including sucrose and trehalose-6-P, have been 
reported as signals (Madhusudanan and Nandakumar, 1983; 
Komarova and Milyaeva, 1991; Lejeune et al., 1993; Roldan et 
al., 1999; van Dijken et al., 2004; Pau et al., 2008). These 
substances may be applied to induce or suppress flowering in 
some plants. Although 1% sucrose reportedly promotes the floral 

transition of late-flowering mutants, such as co, fca, and gi, floral 
transition in these mutants is delayed by further increasing 
sucrose concentration to 5% (Ohto et al., 2001). Metzger (1995) 
presented that applied and endogenous GAs could promote 
floral initiation in many rosette forming long-day plants (LDPs) 
that would normally require a cold treatment. However, the 
floral initiation of some woody perennial species demands a 
decrease in GAs concentrations in the apical meristems (Sharp et 
al., 2010). Hence, these physiological signals promote or suppress 
flowering depending on concentration, bioactive type, and 
genetic background of plants. 

The flower formation of some flowering plants, such as 
chrysanthemum (Williams et al., 1980), orchid (Lopez et al., 
2003, 2005), petunia (Piringer et al., 1960), dahlia (Brøndum et 
al., 1993), has been successfully regulated in terms of 
photoperiod, light quality, and low temperature. However, the 
progress of studies on flowering mechanism of ornamental plants 
is slow probably because of the special natures (such as long 
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Measurement of total starch content 
One hundred mg of leaf powder was extracted using 80% 

Ca(NO3)2 solution to obtain a constant volume of 20 ml; 
afterward, 100 μl of 0.01 mol L–1 I2-KI solution was added to the 
resulting solution to observe colour reaction. Absorbance was 
then determined at 620 nm (Xu et al., 1998). 

 
Measurement of soluble sugar  
Dry leaf powder (100 mg) was transferred to a 15 ml 

centrifuge tube. Ten ml of distilled water was added, and the 
resulting solution was placed in a water bath at 80 °C for 30 min. 
Afterward this solution was cooled and filtered; the residue was 
washed twice, and the supernatants were combined. Activated 
carbon (10 mg) was added to decolorize the powder at 80 °C for 
20 min; the decolorized powder was filtered and then placed in a 
50 ml volumetric flask. Total soluble sugars were analysed using 
anthrone reagent method described by Yemm and Willis (1954). 

 
Measurement of respiration rate 
Respiration rate was measured according to the method of Lei 

et al. (2010). Leaves were cut into small pieces and suspended in 20 
mM potassium phosphate buffer (pH 6.8) placed in a Clark-type 
oxygen electrode cuvette (Hansatech, King’s Lynn, UK) at 25 °C. 
The inhibitors of the cytochrome pathway (1 mM KCN) and the 
alternative pathway (10 mM salicylhydroxamic acid, SHAM) 
were used. Total respiration (TR) is defined as the rate of O2

uptake of leaves without any inhibitor. Residual respiration (RR) is 
defined as O2 uptake of leaves in the presence of both KCN and 
SHAM. Cytochrome pathway capacity (CPC) is defined as the 
difference between O2 uptake rates in the presence of SHAM and 
residual respiration. 

 
Statistical analysis 
Statistical analyses were performed using SPSS ver. 20 (IBM 

Co., USA). Duncan’s multiple range test was conducted to 
determine significant differences at 5% levels. 

 
 

Results  

Changes in the morphological anatomy of stem tips during flower 
formation 

In the preliminary experiment, S. spectabile could flower 
when it was subjected to the photoperiod of 20 h for 1 d; this 
result indicated that S. spectabile could complete floral induction 
during this period. Therefore, the floral induction stage covered 0 
d to 1 d (stage I). The morphological characteristics changed 
little, except that stem tip became more flat and larger in area 
(Fig. 1B, arrow) at 5 d than 0 d (Fig. 1A). The inflorescence 
primordium was observed at 10 d (Fig. 1C, arrow). This period 
from 2 d to 10 d could be considered as floral initiation stage 
(stage II). The period after 11 d could be considered as floral 
development stage (stage III). Rachis and bract differentiation 
period occurred from 11 d to 30 d (stage IIIA). Considering that 
S. spectabile is a corymbose cyme with a three-branched base of 
inflorescence axis (Figs. 1D and 1F), we observed that 
inflorescence axis and the bracts on this axis had differentiated 
(Fig. 1D, arrow 2) or were undergoing differentiation. The 
primary inflorescence axis began to elongate after 30 d, and small 
buds began to develop (Fig. 1G). This period from 31 d to 40 d 
(stage IIIB) covered primary inflorescence axis elongation and 
small bud differentiation periods. 

growing cycle and complex genetic background) of them (Wang 
et al., 2010). Further studies on the flower formation of Sedum 
spectabile have not yet been reported. 

S. spectabile is an ornamental plant that belongs to 
Crassulaceae. It is a variety of Hylotelephium spectabile. S. 
spectabile has been widely planted because of extensive 
management and high ornamental values. Furthermore, S. 
spectabile is a LD plant; hence, its flowering is limited by day 
length. As such, flowering in regions where day length fails to 
satisfy plant requirements is difficult. This study aimed to clarify 
changes in physiological indexes, particularly endogenous 
hormone levels during flower formation induced by 
photoperiod; this study could also provide a theoretical reference 
related to florescence regulation. 

 

Materials and Methods  

Plant materials and treatments 
The pink cultivar of S. spectabile was introduced from Jinan 

(lat. 36°N) to Chengdu (lat. 30°N) in China and used in the 
current study. This plant did not flower in two years when it was 
subjected to natural photoperiods (lat. 30°N) and short day (SD) 
of 14 h photoperiod at 25 ± 2 °C and a photon flux density of 40 
μmol m–2 s–1; nevertheless, S. spectabile could flower when it was 
subjected to a photoperiod of 20 h (LD) at the same temperature 
and photon flux density. Tissue culture seedlings from the 
explants of non-flowering plants were grown under 
photoperiods of 14 h at 25 ± 2 °C and a photon flux density of 
40 μmol m–2 s–1. These seedlings were subjected to photoperiods 
of 20 h when eight pairs of leaves were observed. A pair of mature 
leaves in the fourth node from the top part and apical buds were 
selected to determine related physiological indexes at the end of 
night of 0 (SD), 1, 3, 5, 10, 20, 30, and 40 d subjected to 
continuous LD. To measure endogenous hormone levels, we 
removed plant materials from plantlets and rapidly froze them in 
liquid nitrogen; we then weighed and stored these materials in a 
refrigerator at –80 °C. To determine sugars, we initially 
deactivated the plant materials at 105 °C and dried them to a 
constant weight at 80 °C. This material was then ground in 
powder form, sealed, and stored in a refrigerator at –80 °C. Fresh 
leaves were used to determine respiration. In addition to 
physiological measurements, morphological observations of the 
stem tip of plants were conducted. A completely randomized 
design was used and each treatment consisted of 15 plants. 

 
Measurement of endogenous hormones  
The levels of endogenous hormones, particularly GA, 

abscisic acid (ABA), zeatin (Z), and indole acetic acid (IAA), 
were determined using the extraction methods described by Sun 
et al. (2010). Frozen materials (0.5 g) were removed from the 
refrigerator (–80 °C) and rapidly ground into powder in liquid 
nitrogen. Afterward, 2 ml of 80% methanol was added and 
mixed well by shaking. The materials were subjected to 
extraction for 4 h at 4 °C and centrifuged at 10,000 × g for 20 
min at 4 °C. The supernatant was used as hormone crude extract. 
One ml of 80% methanol was also added to the residue; the 
resulting mixture was subjected to extraction at 4 °C for 2 h and 
then centrifuged at 10,000 × g for 20 min at 4 °C. The crude 
extracts were combined and subsequently purified using C18 
column to remove polar materials. Afterward, the purified 
samples were subjected to enzyme-linked immunosorbent assay. 
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Fig. 1. Changes in the morphological anatomy of stem tips during flower formation. A, B, C, D, E, and F show the treatment of 0, 
5, 10, 20, 30, and 40 d, respectively, and development of stem apex into flower bud. C is the state of flower bud development at 10 
d, and arrow indicates the primary primordium of inflorescence. Arrow 1 indicates the primordium of main inflorescence (i.e., 
inflorescence in the middle of the three branches) in the primary branch. Arrow 2 points to the bract in the base of the 
inflorescence branches. G is the inflorescence of the primary main rachis at 40 d (i.e., arrows in Fig. 1F). Scale bar, 0.1 mm (A, B, 
C) and 0.5 mm (D, E, F, G). 
 

 

Fig. 2. Changes in the abscisic acid, gibberellin, zeatin, and indole acetic acid levels of the apical bud and leaf during flower 
formation. Data with the different letters are significantly different at P ≤ 0.05. 
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Changes in hormone levels during flower formation 
Various hormonal changes during flower formation were 

investigated. In the buds, ABA concentration changed little from 
0 d to 10 d and increased sharply after that and reached the peak 
at 30 d (Fig. 2A). In the leaves, ABA concentration increased 
after 5 d and a peak was observed at 10 d; ABA concentration 
exhibited a different change in pattern from that in the buds after 
10 d.  

Significant changes of GA concentration in the buds were 
observed in all of the three stages during flower formation. GA 
concentration was significantly higher from 1 d to 30 d than at 0 
d and two peaks were observed at 10 d and 30 d respectively (Fig. 
2B). Opposite changes from 0 d to 3 d and similar changes from 
3 d to 40 d were observed in the buds and the leaves (Fig. 2B). 
GA concentration increased and the peaks were reached at 30 d 
in the buds and leaves.  

Zeatin (Z) concentration in the buds increased significantly 
from 0 d to 1 d, suggesting that the increase of cytokinin was 
important during floral induction. Afterward, Z concentration 
maintained a higher level compared to 0 d. A significant peak at 
20 d was observed throughout the differentiation of 
inflorescence primordium (stage IIIA, Fig. 2C). Likewise, Z 
initially was almost unchanged, then increased and subsequently 
decreased in the leaves. The peak was reached at 10 d. Globally Z 
concentration in the buds was higher than in the leaves.  

IAA concentration in the buds changed little during the first 
3 days and then increased, thereby reaching the peak at 5 d (Fig. 
2D). Afterward, IAA concentration declined rapidly; after 10 d, 
IAA concentration increased and was maintained at a high level. 
In the leaves, IAA concentration increased slightly and then 
decreased steadily throughout the period. 

 
Changes in sugars and respiration rate during flower formation 
Soluble sugar content in the leaves increased rapidly from 0 d 

to 1 d (Fig. 3A). No significant change was observed during 1 d 
to 10 d at higher sugar content. Soluble sugar concentration 
sharply increased from 10 d to 20 d and then reached the highest 
value. Afterward, soluble sugar concentration rapidly declined 
and returned to the level of SD at 0 d. The total starch content 
decreased rapidly from 0 d to 1 d; afterward, the total starch 
content increased and then decreased, but it in other periods was 
less than that of the control group at 0 d.  

429

Total respiration (TR) increased from 3 d and continuously 
increased until 40 d in the leaves (Fig. 3B); in particular, TR 
increased from 3 d to 5 d, and this increase was faster in the floral 
initiation stage than in other periods. Cytochrome pathway 
capacity (CPC) changed little and remained at a low level until 
20 d. CPC increased significantly from 20 d to 40 d. 

Discussion 

Relationship between the changes in hormone levels and flower 
formation 

In a number of woody perennial species, a decrease in GAs 
concentrations in the apical meristems was required for floral 
initiation to occur (Sharp et al., 2010). Srikanth and Schmid 
(2011) concluded that GA was required for floral transition in 
SD but not in LD. The different findings may result from the use 
of different experimental materials. In the present experiment, 
GA may be the key factor in floral development but not in floral 
transition. Because exogenous GA was applied on apical buds 
and did not induce flowering under SD treatment in our other 
experiment. Moreover, GA only accelerated floral development 
under LD. GAs are important for the development of flowers in 
A. thaliana (Silverstone et al., 1997). Thin sections revealed that 
GA1 expression was high in the inflorescence meristem, the early 
floral primordial and the anther. Irrespective of vernalization 
status, exposure to two LDs increased expression of Lolium 
perenne GA 20-oxidase-1 (LpGA20ox1), with endogenous GAs 
increasing by up to 5-fold in shoot (MacMillan et al., 2005). The 
similar results were observed by Metzger and Zeevaart (1980) 
and Talon et al. (1991). In the morphological differentiation 
stage, the increasing of GA concentration may be related to 
internode elongation because the flower bud differentiation of S. 
spectabile is accompanied by internode elongation. 

The increasing of Z concentration is important during floral 
induction. This was proved by the fact that the applied BA could 
induce flowering under SD treatment in our other study. During 
the rachis and bract differentiation period, cell division in the 
flower buds occurred at the fastest rate, indicating that higher 
concentration of Z was necessary to promote cell division. 
Similarly, cytokinin overproduction caused enlarged 
inflorescence and flower meristems of A. thaliana (Li et al., 
2010). Related study showed that cytokinin enhanced secondary 

Fig. 3. Changes in sugars (A) and respiration (B) rate during flower formation. Data with the different letters are significantly 
different at P ≤ 0.05. 
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more ATP was probably produced to be used to transport sugars 
and signals to the buds. TR increased from 20 d to 40 d in 
agreement with the result of the decrease in soluble sugar 
content. However, CPC remained at a low level at first, 
indicating that other respiration pathways, such as alternative 
pathways, accounted for a large proportion in the leaves. 

 

Conclusions  

The floral induction, initiation and development of S.
spectabile were the period from 0 d to 1 d, 2 d to 10 d and after 11 
d respectively under long day of 20 h. High Z level in apical buds 
was conducive to floral induction; the increasing levels of GA 
and IAA favour flower initiation. The changes of sugars and the 
increasing of respiration also play important roles during flower 
formation. 
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leaves decreased sharply, but soluble sugar content increased 
rapidly. This change in sugar level may be related to the 
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and Arabidopsis thaliana (Corbesier et al., 2002), sugar content 
also increases during floral induction. However, whether sugar as 
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unknown. Roldan et al. (1999) reported that total starch 
metabolism and a transient increased in sugar levels in the leaves 
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Considering the changes in respiration, TR of the leaves 
increased rapidly in the floral initiation stage, indicating that 
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