27,326 research outputs found
Doublet bands in Cs in the triaxial rotor model coupled with two quasiparticles
The positive parity doublet bands based on the configuration in Cs have been investigated in the two
quasi-particles coupled with a triaxial rotor model. The energy spectra ,
energy staggering parameter , and
values, intraband ratios,
ratios, and orientation of the
angular momentum for the rotor as well as the valence proton and neutron are
calculated. After including the pairing correlation, good agreement has been
obtained between the calculated results and the data available, which supports
the interpretation of this positive parity doublet bands as chiral bands.Comment: Phys.Rev.C (accepted
Transport properties and anisotropy in rare earth doped CaFe2As2 single crystals with Tc above 40 K
In this paper we report the superconductivity above 40 K in the electron
doping single crystal Ca1-xRexFe2As2 (Re = La, Ce, Pr). The x-ray diffraction
patterns indicate high crystalline quality and c-axis orientation. the
resistivity anomaly in the parent compound CaFe2As2 is completely suppressed by
partial replacement of Ca by rare earth and a superconducting transition
reaches as high as 43 K, which is higher than the value in electron doping
FeAs-122 compounds by substituting Fe ions with transition metal, even
surpasses the highest values observed in hole doping systems with a transition
temperature up to 38 K. The upper critical field has been determined with the
magnetic field along ab-plane and c-axis, yielding the anisotropy of 2~3.
Hall-effect measurements indicate that the conduction in this material is
dominated by electron like charge carriers. Our results explicitly demonstrate
the feasibility of inducing superconductivity in Ca122 compounds via electron
doping using aliovalent rare earth substitution into the alkaline earth site,
which should add more ingredients to the underlying physics of the iron-based
superconductors.Comment: 21 pages, 7 figure
Observation of Landau quantization and standing waves in HfSiS
Recently, HfSiS was found to be a new type of Dirac semimetal with a line of
Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are
also pronounced in this compound. Here we report a systematic study of HfSiS by
scanning tunneling microscopy/spectroscopy at low temperature and high magnetic
field. The Rashba-split surface states are characterized by measuring Landau
quantization and standing waves, which reveal a quasi-linear dispersive band
structure. First-principles calculations based on density-functional theory are
conducted and compared with the experimental results. Based on these
investigations, the properties of the Rashba-split surface states and their
interplay with defects and collective modes are discussed.Comment: 6 pages, 5 figure
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor
A particle rotor model (PRM) with a quasi-proton and a quasi-neutron coupled
with a triaxial rotor is developed and applied to study chiral doublet bands
with configurations of a proton and a quasi-neutron. With
pairing treated by the BCS approximation, the present quasi-particle PRM is
aimed at simulating one proton and many neutron holes coupled with a triaxial
rotor. After a detailed analysis of the angular momentum orientations, energy
separation between the partner bands, and behavior of electromagnetic
transitions, for the first time we find aplanar rotation or equivalently chiral
geometry beyond the usual one proton and one neutron hole coupled with a
triaxial rotor.Comment: 25 pages, 10 figures, accepted for publication in Physical Review
Epitaxial graphene on SiC(0001): More than just honeycombs
The potential of graphene to impact the development of the next generation of
electronics has renewed interest in its growth and structure. The
graphitization of hexagonal SiC surfaces provides a viable alternative for the
synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now
possible. Despite this recent progress, the exact nature of the graphene-SiC
interface and whether the graphene even has a semiconducting gap remain
controversial. Using scanning tunneling microscopy with functionalized tips and
density functional theory calculations, here we show that the interface is a
warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon
complexes periodically inserted into the honeycomb lattice. These defects
relieve the strain between the graphene layer and the SiC substrate, while
still retaining the three-fold coordination for each carbon atom. Moreover,
these defects break the six-fold symmetry of the honeycomb, thereby naturally
inducing a gap: the calculated band structure of the interface is
semiconducting and there are two localized states near K below the Fermi level,
explaining the photoemission and carbon core-level data. Nonlinear dispersion
and a 33 meV gap are found at the Dirac point for the next layer of graphene,
providing insights into the debate over the origin of the gap in epitaxial
graphene on SiC(0001). These results indicate that the interface of the
epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively
impacts the physical and electronic properties of the subsequent graphene
layers
- …