31,141 research outputs found

    Thermomechanical Characterization And Modeling For TSV Structures

    Get PDF
    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente

    TRED: a transcriptional regulatory element database, new entries and other development

    Get PDF
    Transcriptional factors (TFs) and many of their target genes are involved in gene regulation at the level of transcription. To decipher gene regulatory networks (GRNs) we require a comprehensive and accurate knowledge of transcriptional regulatory elements. TRED () was designed as a resource for gene regulation and function studies. It collects mammalian cis- and trans-regulatory elements together with experimental evidence. All the regulatory elements were mapped on to the assembled genomes. In this new release, we included a total of 36 TF families involved in cancer. Accordingly, the number of target promoters and genes for TF families has increased dramatically. There are 11 660 target genes (7479 in human, 2691 in mouse and 1490 in rat) and 14 908 target promoters (10 225 in human, 2985 in mouse and 1698 in rat). Additionally, we constructed GRNs for each TF family by connecting the TF–target gene pairs. Such interaction data between TFs and their target genes will assist detailed functional studies and help to obtain a panoramic view of the GRNs for cancer research
    • …
    corecore