109,283 research outputs found

    Chiral geometry and rotational structure for 130^{130}Cs in the projected shell model

    Get PDF
    The projected shell model with configuration mixing for nuclear chirality is developed and applied to the observed rotational bands in the chiral nucleus 130^{130}Cs. For the chiral bands, the energy spectra and electromagnetic transition probabilities are well reproduced. The chiral geometry illustrated in the K plotK~plot and the azithumal plotazithumal~plot is confirmed to be stable against the configuration mixing. The other rotational bands are also described in the same framework

    Gibbsian Hypothesis in Turbulence

    Full text link
    We show that Kolmogorov multipliers in turbulence cannot be statistically independent of others at adjacent scales (or even a finite range apart) by numerical simulation of a shell model and by theory. As the simplest generalization of independent distributions, we suppose that the steady-state statistics of multipliers in the shell model are given by a translation-invariant Gibbs measure with a short-range potential, when expressed in terms of suitable ``spin'' variables: real-valued spins that are logarithms of multipliers and XY-spins defined by local dynamical phases. Numerical evidence is presented in favor of the hypothesis for the shell model, in particular novel scaling laws and derivative relations predicted by the existence of a thermodynamic limit. The Gibbs measure appears to be in a high-temperature, unique-phase regime with ``paramagnetic'' spin order.Comment: 19 pages, 9 figures, greatly expanded content, accepted to appear in J. Stat. Phy

    Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory

    Full text link
    Five-dimensional collective Hamiltonian based on the covariant density functional theory has been applied to study the the low-lying states of even-even 148162^{148-162}Gd isotopes. The shape evolution from 148^{148}Gd to 162^{162}Gd is presented. The experimental energy spectra and intraband B(E2)B(E2) transition probabilities for the 148162^{148-162}Gd isotopes are reproduced by the present calculations. The relative B(E2)B(E2) ratios in present calculations are also compared with the available interacting boson model results and experimental data. It is found that the occupations of neutron 1i13/21i_{13/2} orbital result in the well-deformed prolate shape, and are essential for Gd isotopes.Comment: 11pages, 10figure

    Stability Of contact discontinuity for steady Euler System in infinite duct

    Full text link
    In this paper, we prove structural stability of contact discontinuities for full Euler system

    Resonant Interactions in Rotating Homogeneous Three-dimensional Turbulence

    Full text link
    Direct numerical simulations of three-dimensional (3D) homogeneous turbulence under rapid rigid rotation are conducted to examine the predictions of resonant wave theory for both small Rossby number and large Reynolds number. The simulation results reveal that there is a clear inverse energy cascade to the large scales, as predicted by 2D Navier-Stokes equations for resonant interactions of slow modes. As the rotation rate increases, the vertically-averaged horizontal velocity field from 3D Navier-Stokes converges to the velocity field from 2D Navier-Stokes, as measured by the energy in their difference field. Likewise, the vertically-averaged vertical velocity from 3D Navier-Stokes converges to a solution of the 2D passive scalar equation. The energy flux directly into small wave numbers in the kz=0k_z=0 plane from non-resonant interactions decreases, while fast-mode energy concentrates closer to that plane. The simulations are consistent with an increasingly dominant role of resonant triads for more rapid rotation

    Transonic Shocks In Multidimensional Divergent Nozzles

    Full text link
    We establish existence, uniqueness and stability of transonic shocks for steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity(non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Frechet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.Comment: 54 page
    corecore