9,380 research outputs found
Supersymmetric KdV equation: Darboux transformation and discrete systems
For the supersymmetric KdV equation, a proper Darboux transformation is
presented. This Darboux transformation leads to the B\"{a}cklund transformation
found early by Liu and Xie \cite{liu2}. The Darboux transformation and the
related B\"{a}cklund transformation are used to construct integrable super
differential-difference and difference-difference systems. The continuum limits
of these discrete systems and of their Lax pairs are also considered.Comment: 13pages, submitted to Journal of Physics
TimeMachine: Timeline Generation for Knowledge-Base Entities
We present a method called TIMEMACHINE to generate a timeline of events and
relations for entities in a knowledge base. For example for an actor, such a
timeline should show the most important professional and personal milestones
and relationships such as works, awards, collaborations, and family
relationships. We develop three orthogonal timeline quality criteria that an
ideal timeline should satisfy: (1) it shows events that are relevant to the
entity; (2) it shows events that are temporally diverse, so they distribute
along the time axis, avoiding visual crowding and allowing for easy user
interaction, such as zooming in and out; and (3) it shows events that are
content diverse, so they contain many different types of events (e.g., for an
actor, it should show movies and marriages and awards, not just movies). We
present an algorithm to generate such timelines for a given time period and
screen size, based on submodular optimization and web-co-occurrence statistics
with provable performance guarantees. A series of user studies using Mechanical
Turk shows that all three quality criteria are crucial to produce quality
timelines and that our algorithm significantly outperforms various baseline and
state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and
other info available at http://cs.stanford.edu/~althoff/timemachine
Recommended from our members
Multi-task learing for subspace segmentation
Subspace segmentation is the process of clustering a set of data points that are assumed to lie on the union of multiple linear or affine subspaces, and is increasingly being recognized as a fundamental tool for data analysis in high dimensional settings. Arguably one of the most successful approaches is based on the observation that the sparsest representation of a given point with respect to a dictionary formed by the others involves nonzero coefficients associated with points originating in the same subspace. Such sparse representations are computed independently for each data point via ℓ1-norm minimization and then combined into an affinity matrix for use by a final spectral clustering step. The downside of this procedure is two-fold. First, unlike canonical compressive sensing scenarios with ideally-randomized dictionaries, the data-dependent dictionaries here are unavoidably highly structured, disrupting many of the favorable properties of the ℓ1 norm. Secondly, by treating each data point independently, we ignore useful relationships between points that can be leveraged for jointly computing such sparse representations. Consequently, we motivate a multi-task learning-based framework for learning coupled sparse representations leading to a segmentation pipeline that is both robust against correlation structure and tailored to generate an optimal affinity matrix. Theoretical analysis and empirical tests are provided to support these claims.Y. Wang is sponsored by the University of Cambridge Overseas Trust. Y. Wang and Q. Ling are partially supported by sponsorship from Microsoft Research Asia. Q. Ling is also supported in part by NSFC grant 61004137. W. Chen is supported by EPSRC Research Grant EP/K033700/1 and the Natural Science Foundation of China 61401018.This is the final version of the article. It first appeared from JMLR via http://jmlr.org/proceedings/papers/v37/wangc15.htm
Demonstrating Additional Law of Relativistic Velocities based on Squeezed Light
Special relativity is foundation of many branches of modern physics, of which
theoretical results are far beyond our daily experience and hard to realized in
kinematic experiments. However, its outcomes could be demonstrated by making
use of convenient substitute, i.e. squeezed light in present paper. Squeezed
light is very important in the field of quantum optics and the corresponding
transformation can be regarded as the coherent state of SU(1; 1). In this
paper, the connection between the squeezed operator and Lorentz boost is built
under certain conditions. Furthermore, the additional law of relativistic
velocities and the angle of Wigner rotation are deduced as well
Reexamining the "finite-size" effects in isobaric yield ratios using a statistical abrasion-ablation model
The "finite-size" effects in the isobaric yield ratio (IYR), which are shown
in the standard grand-canonical and canonical statistical ensembles (SGC/CSE)
method, is claimed to prevent obtaining the actual values of physical
parameters. The conclusion of SGC/CSE maybe questionable for neutron-rich
nucleus induced reaction. To investigate whether the IYR has "finite-size"
effects, the IYR for the mirror nuclei [IYR(m)] are reexamined using a modified
statistical abrasion-ablation (SAA) model. It is found when the projectile is
not so neutron-rich, the IYR(m) depends on the isospin of projectile, but the
size dependence can not be excluded. In reactions induced by the very
neutron-rich projectiles, contrary results to those of the SGC/CSE models are
obtained, i.e., the dependence of the IYR(m) on the size and the isospin of the
projectile is weakened and disappears both in the SAA and the experimental
results.Comment: 5 pages and 4 figure
Coherent Backscattering of light in a magnetic field
This paper describes how coherent backscattering is altered by an external
magnetic field. In the theory presented, magneto-optical effects occur inside
Mie scatterers embedded in a non-magnetic medium. Unlike previous theories
based on point-like scatterers, the decrease of coherent backscattering is
obtained in leading order of the magnetic field using rigorous Mie theory. This
decrease is strongly enhanced in the proximity of resonances, which cause the
path length of the wave inside a scatterer to be increased. Also presented is a
novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.
Glass Transition in the Polaron Dynamics of CMR Manganites
Neutron scattering measurements on a bilayer manganite near optimal doping
show that the short-range polarons correlations are completely dynamic at high
T, but then freeze upon cooling to a temperature T* 310 K. This glass
transition suggests that the paramagnetic/insulating state arises from an
inherent orbital frustration that inhibits the formation of a long range
orbital- and charge-ordered state. Upon further cooling into the
ferromagnetic-metallic state (Tc=114 K), where the polarons melt, the diffuse
scattering quickly develops into a propagating, transverse optic phonon.Comment: 4 pages, 4 figures. Physical Review Letters (in Press
Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants
Cataloged from PDF version of article.Public attention to the food scandals raises an urgent need to develop effective and reliable methods to detect food contaminants. The current prevailing detections are primarily based upon liquid chromatography, mass spectroscopy, or colorimetric methods, which usually require sophisticated and time-consuming steps or sample preparation. Herein, we develop a facile strategy to assemble the vertically aligned monolayer of Au nanorods with a nominal 0.8 nm gap distance and demonstrate their applications in the rapid detection of plasticizers and melamine contamination at femtomolar level by surface-enhanced Raman scattering spectroscopy (SERS). The SERS signals of plasticizers are sensitive down to 0.9 fM concentrations in orange juices. It is the lowest detection limit reported to date, which is 7 orders of magnitude lower than the standard of United States (6 ppb). The highly organized vertical arrays generate the reproducible "SERS-active sites" and can be achieved on arbitrary substrates, ranging from silicon, gallium nitride, glass to flexible poly(ethylene naphthalate) substrates
Inhomogeneous magnetism in La-doped CaMnO3. (I) Nanometric-scale spin clusters and long-range spin canting
Neutron measurements on Ca{1-x}La{x}MnO3 (0.00 <= x <= 0.20) reveal the
development of a liquid-like spatial distribution of magnetic droplets of
average size ~10 Angstroms, the concentration of which is proportional to x
(one cluster per ~60 doped electrons). In addition, a long-range ordered
ferromagnetic component is observed for ~0.05 < x < ~0.14. This component is
perpendicularly coupled to the simple G-type antiferromagnetic (G-AFM)
structure of the undoped compound, which is a signature of a G-AFM + FM
spin-canted state. The possible relationship between cluster formation and the
stabilization of a long-range spin-canting for intermediate doping is
discussed.Comment: Submitted to Physical Review
- …
