13 research outputs found

    Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases

    No full text
    We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy

    Synthesis and Evaluation of a Nanoglobular Dendrimer 5-Aminosalicylic Acid Conjugate with a Hydrolyzable Schiff Base Spacer for Treating Retinal Degeneration

    No full text
    Biocompatible dendrimers with well-defined nanosizes are increasingly being used as carriers for drug delivery. 5-Aminosalicylic acid (5-ASA) is an FDA approved therapeutic agent recently found effective in treating retinal degeneration of animal models. Here, a water-soluble dendrimer conjugate of 5-ASA (AGFB-ASA) was designed to treat such retinal degeneration. The drug was conjugated to a generation 2 (G(2)) lysine dendrimer with a silsesquioxane core (nanoglobule) by using a hydrolysable Schiff base spacer. Incubation of nanoglobular G(2) dendrimer conjugates containing a 4-formylbenzoate (FB) Schiff base spacer in pH 7.4 phosphate buffers at 37 °C gradually released 5-ASA. Drug release from the dendrimer conjugate was significantly slower than from the low molecular weight free Schiff base of 5-ASA (FB-ASA). 5-ASA release from the dendrimer conjugate was dependent on steric hindrance around the spacer. After intraperitoneal injection, the nanoglobular 5-ASA conjugate provided more effective 7-day protection against light-induced retinal degeneration at a reduced dose than free 5-ASA in Abca4(−/−)Rdh8(−/−) mice. The dendrimer 5-ASA conjugate with a degradable spacer could be a good candidate for controlled delivery of 5-ASA to the eye for treatment of retinal degeneration
    corecore