33,235 research outputs found
Recommended from our members
Sliding mode and shaped input vibration control of flexible systems
Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the vibration reduction problem is investigated for a flexible spacecraft during attitude maneuvering. A new control strategy is proposed, which integrates both the command input shaping and the sliding mode output feedback control (SMOFC) techniques. Specifically, the input shaper is designed for the reference model and implemented outside of the feedback loop in order to achieve the exact elimination of the residual vibration by modifying the existing command. The feedback controller, on the other hand, is designed based on the SMOFC such that the closed-loop system behaves like the reference model with input shaper, where the residual vibrations are eliminated in the presence of parametric uncertainties and external disturbances. An attractive feature of this SMOFC algorithm is that the parametric uncertainties or external disturbances of the system do not need to satisfy the so-called matching conditions or invariance conditions provided that certain bounds are known. In addition, a smoothed hyperbolic tangent function is introduced to eliminate the chattering phenomenon. Compared with the conventional methods, the proposed scheme guarantees not only the stability of the closed-loop system, but also the good performance as well as the robustness. Simulation results for the spacecraft model show that the precise attitudes control and vibration suppression are successfully achieved
Tungsten fibre reinforced Zr-based bulk metallic glass composites
A Zr-based bulk metallic glass (BMG) alloy with the composition (Zr55Al10Ni5Cu30)98.5Si1.5 was used as the base material to form BMG composites. Tungsten fiber reinforced BMG composites were successfully fabricated by pressure metal infiltration technique, with the volume fraction of the tungsten fiber ranging from 10% to 70%. Microstructure and mechanical properties of the BMG composites were investigated. Tungsten reinforcement significantly increased the material’s ductility by changing the compressive failure mode from single shear band propagation to multiple shear bands propagation, and transferring stress from matrix to tungsten fibers
Discussion on Event Horizon and Quantum Ergosphere of Evaporating Black Holes in a Tunnelling Framework
In this paper, with the Parikh-Wilczek tunnelling framework the positions of
the event horizon of the Vaidya black hole and the Vaidya-Bonner black hole are
calculated respectively. We find that the event horizon and the apparent
horizon of these two black holes correspond respectively to the two turning
points of the Hawking radiation tunnelling barrier. That is, the quantum
ergosphere coincides with the tunnelling barrier. Our calculation also implies
that the Hawking radiation comes from the apparent horizon.Comment: 8 page
Brueckner-Hartree-Fock and its renormalized calculations for finite nuclei
We have performed self-consistent Brueckner-Hartree-Fock (BHF) and its
renormalized theory to the structure calculations of finite nuclei. The
-matrix is calculated within the BHF basis, and the exact Pauli exclusion
operator is determined by the BHF spectrum. Self-consistent occupation
probabilities are included in the renormalized Brueckner-Hartree-Fock (RBHF).
Various systematics and convergences are studies. Good results are obtained for
the ground-state energy and radius. RBHF can give a more reasonable
single-particle spectrum and radius. We present a first benchmark calculation
with other {\it ab initio} methods using the same effective Hamiltonian. We
find that the BHF and RBHF results are in good agreement with other
methods
Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal
We have investigated the specific heat of optimally-doped iron chalcogenide
superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The
electronic specific heat Ce of this sample has been successfully separated from
the phonon contribution using the specific heat of a non-superconducting sample
(Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld
coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol
K^2, indicating intermediate electronic correlation. The temperature dependence
of Ce in the superconducting state can be best fitted using a double-gap model
with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap
magnitudes derived from fitting, as well as the large specific heat jump of
Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity.
Furthermore, the magnetic field dependence of specific heat shows strong
evidence for multiband superconductivity
- …