769 research outputs found

    Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit

    Full text link
    We study a tripartite quantum system consisting of a coplanar-waveguide (CPW) resonator and a nanomechanical resonator (NAMR) connected by a flux qubit, where the flux qubit has a large detuning from both resonators. By a unitray transformation and a second-order approximation, we obtain a strong and controllable (i.e., magnetic-field-dependent) effective coupling between the NAMR and the CPW resonator. Due to the strong coupling, vacuum Rabi splitting can be observed from the voltage-fluctuation spectrum of the CPW resonator. We further study the properties of single photon transport as inferred from the reflectance or equivalently the transmittance. We show that the reflectance and the corresponding phase shift spectra both exhibit doublet of narrow spectral features due to vacuum Rabi splitting. By tuning the external magnetic field, the reflectance and the phase shift can be varied from 0 to 1 and π-\pi to π\pi, respectively. The results indicate that this hybrid quantum system can act as a quantum router.Comment: 8 pages, 6 figure

    Epitranscriptomics for Biomedical Discovery

    Get PDF
    Epitranscriptomics is a newly burgeoning field pertaining to the complete delineation and elucidation of chemical modifications of nucleotides found within all classes of RNA that do not involve a change in the ribonucleotide sequence. More than 140 diverse and distinct nucleotide modifications have been identified in RNA, dwarfing the number of nucleotide modifications found in DNA. The majority of epitranscriptomic modifications have been identified in ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). However, in total, the knowledge of the occurrence, and specifically the function, of RNA modifications remains scarce. Recently, the rapid advancement of next‐generation sequencing and mass spectrometry technologies have allowed for the identification and functional characterization of nucleotide modifications in both protein‐coding and non‐coding RNA on a global, transcriptome scale. In this chapter, we will introduce the concepts of nucleotide modification, summarize transcriptome‐wide RNA modification mapping techniques, highlight recent studies exploring the functions of RNA modifications and their association to disease, and finally offer insight into the future progression of epitranscriptomics

    Revealing the Impact of F4-TCNQ as Additive on Morphology and Performance of High-Efficiency Nonfullerene Organic Solar Cells

    Get PDF
    Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells
    corecore