5 research outputs found

    Reflected near-field blast pressure measurements using high speed video

    Get PDF
    Background: The design and analysis of protective systems requires a detailed understanding of, and the ability to accurately predict, the distribution of pressure loads acting on an obstacle following an explosive detonation. In particular, there is a pressing need for accurate characterisation of blast loads in the region very close to a detonation, where even small improvised devices can produce serious structural or material damage. Objective: Accurate experimental measurement of these near-field blast events, using intrusive methods, is demanding owing to the high magnitudes (> 100 MPa) and short durations (< 1 ms) of loading. The objective of this article is to develop a non-intrusive method for measuring reflected blast pressure distributions using image analysis. Methods: This article presents results from high speed video analysis of near-field spherical PE4 explosive blasts. The Canny edge detection algorithm is used to track the outer surface of the explosive fireball, with the results used to derive a velocity-radius relationship. Reflected pressure distributions are calculated using this velocity-radius relationship in conjunction with the Rankine-Hugoniot jump conditions. Results: The indirectly measured pressure distributions from high speed video are compared with directly measured pressure distributions and are shown to be in good qualitative agreement with respect to distribution of reflected pressures, and in good quantitative agreement with peak reflected pressures (within 10% of the maximum recorded value). Conclusions: The results indicate that it is possible to accurately measure blast loads in the order of 100s MPa using techniques which do not require sensitive recording equipment to be located close to the source of the explosion
    corecore