43,031 research outputs found

    Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods

    Full text link
    This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension Q1rotQ_1^{\rm rot}, we get the lower bound of the eigenvalue. Additionally, we also use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue. The postprocessing method need only to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once. Some numerical results are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure

    Large deformation of spherical vesicle studied by perturbation theory and Surface evolver

    Full text link
    With tangent angle perturbation approach the axial symmetry deformation of a spherical vesicle in large under the pressure changes is studied by the elasticity theory of Helfrich spontaneous curvature model.Three main results in axial symmetry shape: biconcave shape, peanut shape, and one type of myelin are obtained. These axial symmetry morphology deformations are in agreement with those observed in lipsome experiments by dark-field light microscopy [Hotani, J. Mol. Biol. 178, (1984) 113] and in the red blood cell with two thin filaments (myelin) observed in living state (see, Bessis, Living Blood Cells and Their Ultrastructure, Springer-Verlag, 1973). Furthermore, the biconcave shape and peanut shape can be simulated with the help of a powerful software, Surface Evolver [Brakke, Exp. Math. 1, 141 (1992) 141], in which the spontaneous curvature can be easy taken into account.Comment: 16 pages, 6 EPS figures and 2 PS figure

    Pattern formation of indirect excitons in coupled quantum wells

    Full text link
    Using a nonlinear Schr\"odinger equation including short-range two-body attraction and three-body repulsion, we investigate the spatial distribution of indirect excitons in semiconductor coupled quantum wells. The results obtained can interpret the experimental phenomenon that annular exciton cloud first contracts then expands when the number of confined excitons is increased in impurity potential well, as observed by Lai \emph{et al.} [Lai etal.et al., Science \textbf{303}, 503 (2004)]. In particular, the model reconciles the patterns of exciton rings reported by Butov \emph{et al.} [Butov etal.et al., Nature \textbf{418}, 751 (2002)]. At higher densities, the model predicts much richer patterns, which could be tested by future experiments.Comment: 5 Revtex4 pages, 3 figure

    Phenomenological Analysis of D Meson Lifetimes

    Get PDF
    The QCD-based operator-product-expansion technique is systematically applied to the study of charmed meson lifetimes. We stress that it is crucial to take into account the momentum of the spectator light quark of charmed mesons, otherwise the destructive Pauli-interference effect in D+D^+ decays will lead to a negative decay width for the D+D^+. We have applied the QCD sum rule approach to estimate the hadronic matrix elements of color-singlet and color-octet 4-quark operators relevant to nonleptonic inclusive DD decays. The lifetime of Ds+D_s^+ is found to be longer than that of D0D^0 because the latter receives a constructive WW-exchange contribution, whereas the hadronic annihilation and leptonic contributions to the former are compensated by the Pauli interference. We obtain the lifetime ratio τ(Ds+)/τ(D0)\tau(D_s^+)/\tau(D^0) ≈1.08±0.04\approx 1.08\pm 0.04, which is larger than some earlier theoretical estimates, but still smaller than the recent measurements by CLEO and E791.Comment: 14 pages, 3 figure

    Microwave photoresistance of a high-mobility two-dimensional electron gas in a triangular antidot lattice

    Full text link
    The microwave (MW) photoresistance has been measured on a high-mobility two-dimensional electron gas patterned with a shallow triangular antidot lattice, where both the MW-induced resistance oscillations (MIRO) and magnetoplasmon (MP) resonance are observed superposing on sharp commensurate geometrical resonance (GR). Analysis shows that the MIRO, MP, and GR are decoupled from each other in these experiments.Comment: 5 pages, 4 figures, paper accepted by PR

    Understanding the association between antidepressants and the risk of being diagnosed with dementia in older people: a self-controlled case series study

    Get PDF
    Background: Given concerns about adverse outcomes for older people taking antidepressants in the literature, we investigated whether taking antidepressants elevates the risk of dementia. Objective: This study aims to investigate the putative association of antidepressants with the risk of dementia. Methods: We conducted a population-based self-controlled case series analysis of older people with dementia and taking antidepressants, using territory-wide medical records of 194,507 older patients collected by the Hospital Authority of Hong Kong, to investigate the association between antidepressant treatment and the risk of developing dementia in older people. Results: There was a significantly higher risk of being diagnosed with dementia during the pre-drug-exposed period (incidence rate ratio (IRR) 20.42 (95% CI: 18.66–22.34)) compared to the non-drug-exposed baseline period. The IRR remained high during the drug-exposed period (IRR 8.86 (7.80–10.06)) before returning to a baseline level after washout (IRR 1.12 (0.77–1.36)). Conclusion: The higher risk of dementia before antidepressant treatment may be related to emerging psychiatric symptoms co-occurring with dementia, which trigger medical consultations that result in a decision to begin antidepressants. Our findings do not support a causal relationship between antidepressant treatment and the risk of dementia

    Evidence for SU(3) symmetry breaking from hyperon production

    Get PDF
    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: Set-1 with SU(3) flavor symmetry and Set-2 with SU(3) flavor symmetry breaking in HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict polarizations of the octet baryons produced in e+e−e^+e^- annihilation and semi-inclusive deeply lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ\Lambda polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get a collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed.Comment: 3 tables, 14 figure

    Robust Personal Audio Geometry Optimization in the SVD-Based Modal Domain

    Get PDF
    © 2014 IEEE. Personal audio generates sound zones in a shared space to provide private and personalized listening experiences with minimized interference between consumers. Regularization has been commonly used to increase the robustness of such systems against potential perturbations in the sound reproduction. However, the performance is limited by the system geometry such as the number and location of the loudspeakers and controlled zones. This paper proposes a geometry optimization method to find the most geometrically robust approach for personal audio amongst all available candidate system placements. The proposed method aims to approach the most 'natural' sound reproduction so that the solo control of the listening zone coincidently accompanies the preferred quiet zone. Being formulated in the SVD-based modal domain, the method is demonstrated by applications in three typical personal audio optimizations, i.e., the acoustic contrast control, the pressure matching, and the planarity control. Simulation results show that the proposed method can obtain the system geometry with better avoidance of 'occlusion,' improved robustness to regularization, and improved broadband equalization
    • …
    corecore