285 research outputs found
Lycium barbarum Polysaccharide Improves Bipolar Pulse Current-Induced Microglia Cell Injury Through Modulating Autophagy
published_or_final_versio
The impact of Border policy effect on cross-border ethnic areas
Boundary effect analysis is related to border policy making in the cross-border ethnic area. The border effect literatures show that
geographic boundaries have obvious impacts on economic, social and cultural relations in both sides of a nation border. Particularly
in cross-border ethnic areas, each ethnic group has strong internal spatial structure relevance, and the boundary effect is more
obvious. However, most of China's border areas are cross-border ethnic areas, each of border issues is unique. Under this perspective,
we analyze the border effects of various boundaries can provide basis for formulating border management policies. For small scale of
cross-border ethnic minority areas, how to formulate the boundary management policy is a good question to explore. This paper is
demonstrated by a study of the impact of border management policies in Dehong Dai and Jingpo Autonomous Prefecture in Yunnan
Province at the border area to Burma. The comparative method is used to analysis the border management policies in past 50 decades
for the border area of Yunnan Province .This research aims to define trends within border policy and its influences to national
security. This paper also examines Wendy Brown's liberal theory of border management policy. We found that it is not suitable for
Sino-Burma border area. The conclusion is that the changes or instability of international economic and political situation has more
influence to this cross-border ethnic area, and only innovative policy will be effective in cross-border ethnic area. So the border
management policies should reflect the change of international context
Infiltration of Alternatively Activated Macrophages in Cancer Tissue Is Associated with MDSC and Th2 Polarization in Patients with Esophageal Cancer
published_or_final_versio
The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau
The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP
Induction of stable human FOXP3<sup>+</sup> Tregs by a parasite-derived TGF-β mimic
Immune homeostasis in the intestine is tightly controlled by FOXP3 + regulatory T cells (Tregs), defects of which are linked to the development of chronic conditions, such as inflammatory bowel disease (IBD). As a mechanism of immune evasion, several species of intestinal parasites boost Treg activity. The parasite Heligmosomoides polygyrus is known to secrete a molecule (Hp-TGM) that mimics the ability of TGF-β to induce FOXP3 expression in CD4 + T cells. The study aimed to investigate whether Hp-TGM could induce human FOXP3 + Tregs as a potential therapeutic approach for inflammatory diseases. CD4 + T cells from healthy volunteers were expanded in the presence of Hp-TGM or TGF-β. Treg induction was measured by flow cytometric detection of FOXP3 and other Treg markers, such as CD25 and CTLA-4. Epigenetic changes were detected using ChIP-Seq and pyrosequencing of FOXP3. Treg phenotype stability was assessed following inflammatory cytokine challenge and Treg function was evaluated by cellular co-culture suppression assays and cytometric bead arrays for secreted cytokines. Hp-TGM efficiently induced FOXP3 expression (> 60%), in addition to CD25 and CTLA-4, and caused epigenetic modification of the FOXP3 locus to a greater extent than TGF-β. Hp-TGM-induced Tregs had superior suppressive function compared with TGF-β-induced Tregs, and retained their phenotype following exposure to inflammatory cytokines. Furthermore, Hp-TGM induced a Treg-like phenotype in in vivo differentiated Th1 and Th17 cells, indicating its potential to re-program memory cells to enhance immune tolerance. These data indicate Hp-TGM has potential to be used to generate stable human FOXP3 + Tregs to treat IBD and other inflammatory diseases. </p
Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia
Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the β-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/β-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/β-catenin interaction
A Generic Platform for Cellular Screening Against Ubiquitin Ligases
Ubiquitin signalling regulates most aspects of cellular life, thus deregulation of ubiquitylation has been linked with a number of diseases. E3 ubiquitin ligases provide substrate selectivity in ubiquitylation cascades and are therefore considered to be attractive targets for developing therapeutic molecules. In contrast to established drug target classes, such as protein kinases, GPCRs, hormone receptors and ion channels, ubiquitin drug discovery is in its early stages. This is, in part, due to the complexity of the ubiquitylation pathways and the lack of robust quantitative technologies that allow high-throughput screening of inhibitors. Here we report the development of a Ubiquitin Ligase Profiling system, which is a novel and generic cellular technology designed to facilitate identification of selective inhibitors against RING type E3 ubiquitin ligases. Utilization of this system requires a single co-transfection of cells with assay vectors, thereby enabling readout of E3 ubiquitin ligase catalytic activity within the cellular environment. Therefore, our robust high-throughput screening platform offers novel opportunities for the development of inhibitors against this difficult-to-target E3 ligase enzyme class
Strain induced exciton fine-structure splitting and shift in bent ZnO microwires
Lattice strain is a useful and economic way to tune the device performance and is commonly present in nanostructures. Here, we investigated for the first time the exciton spectra evolution in bent ZnO microwires along the radial direction via high spatial/energy resolution cathodeluminescence spectroscopy at 5.5 K. Our experiments show that the exciton peak splits into multi fine peaks towards the compressive part while retains one peak in the tensile part and the emission peak displays a continuous blue-shift from tensile to compressive edges. In combination with first-principles calculations, we show that the observed NBE emission splitting is due to the valence band splitting and the absence of peak splitting in the tensile part maybe due to the highly localized holes in the A band and the carrier density distribution across the microwire. Our studies may pave the way to design nanophotonic and electronic devices using bent ZnO nanowires
Validation of an NSP-based (negative selection pattern) gene family identification strategy
<p>Abstract</p> <p>Background</p> <p>Gene family identification from ESTs can be a valuable resource for analysis of genome evolution but presents unique challenges in organisms for which the entire genome is not yet sequenced. We have developed a novel gene family identification method based on negative selection patterns (NSP) between family members to screen EST-generated contigs. This strategy was tested on five known gene families in Arabidopsis to see if individual paralogs could be identified with accuracy from EST data alone when compared to the actual gene sequences in this fully sequenced genome.</p> <p>Results</p> <p>The NSP method uniquely identified family members in all the gene families tested. Two members of the FtsH gene family, three members each of the PAL, RF1, and ribosomal L6 gene families, and four members of the CAD gene family were correctly identified. Additionally all ESTs from the representative contigs when checked against MapViewer data successfully identify the gene locus predicted.</p> <p>Conclusion</p> <p>We demonstrate the effectiveness of the NSP strategy in identifying specific gene family members in Arabidopsis using only EST data and we describe how this strategy can be used to identify many gene families in agronomically important crop species where they are as yet undiscovered.</p
- …