5 research outputs found

    Modeling of the rheological properties of multinanolayer films in the presence of compatibilized interphase

    Get PDF
    heological behavior of nanolayered films of polyethylene/polyamide 6 (PE/PA6) compatibilized in situ during the coextrusion process has been studied at a temperature between the melting temperatures of PE and PA6. Thanks to the high number of interfaces, a drastic increase in dynamic moduli has been measured when increasing the interphase volume fraction in the films, and a solid-like behavior for the interphase was identified. Different models are compared to capture the complex viscosity of nanolayered films as a function of angular frequency. A model considering interphase and bulk viscosities and a single fitting parameter, namely, the thickness over which the viscosity decreases linearly from the interphase to the bulk one, captures the complex viscosity of all samples. This thickness is comparable to the PE layer thickness up to values about 1 ÎŒm before a significant bulk region has to be added to capture the behavior for thicker layers. This suggests that the melt rheology is impacted by the presence of a nanometric interphase over very large (micronic) length scales

    Techniques for post-fracture analysis

    No full text
    International audienceFracture observation is one of the key ways to understand the behavior of bonded assemblies. The plural science of bonded assemblies includes three main areas such as polymer sciences, physical chemistry of surfaces and interfaces, and mechanics. Solving the equation of adhesion needs intersection of all these aspects. Moreover, this multi-physics science is also a multi-scale one. Understanding surface fracture deals with all these aspects. This chapter presents three types of measurement systems: microscopy, compositional analysis/material identification, and mechanical observations. A table sums up an exhaustive list of the major observation devices and precise references of works that use these types of methods. Then, the main methods are detailed with macroscopic and mesoscopic observations, microscopic observation, physicochemical analysis, and mechanical observations
    corecore