199 research outputs found

    S.11.1 Influence of digital ulcer healing on disability and daily activity limitations in SSc

    Get PDF
    Objective. We previously showed that DU significantly increased global and hand disability with a significant impact on activities of daily living (ADLs) and work disability. This study aims to evaluate the impact of digital ulcer (DU) healing on disability and daily activity limitations in SSc. Methods. From January 2008 and June 2009, we prospectively evaluated 189 SSc patients for DU history, disability, employment and occupational status during meetings of the French SSc Patient Association (n = 86, 45.5%) or during hospitalization (n = 103, 54.5%)1. Among the 60 patients with at least one active DU at baseline (M0), 40 patients were followed longitudinally over 6 (3) months. These patients were evaluated for DU history, global and hand disability, health-related quality of life (HRQoL), daily activity limitation and employment status. Results. The median (IQR) age was 57.5 (43.5-68) years and the median (IQR) disease duration was 8.3 (3-16.5) years. Twenty-two (55%) patients had diffuse SSc and 34 (85%) were females. At baseline, a mean of 2.9 (2.8) DU per patient was reported. Thirty-three (82.5%) patients had ischaemic DU, 7 (17.5%) patients had >1 DU associated with calcinosis and 13 (32.5%) patients had mechanical DU. Thirteen (32.5%) patients had >4 DU at baseline. Among the 40 patients, 16 (40%) patients showed complete ulcer healing. In these patients with DU, the presence of calcinosis was associated with a lower probability of healing (P = 0.03). Comparison between healed and no-healed DU patients showed an improvement of hand disability provided by an improvement of the Cochin Hand Function score (P = 0.05)) and a trend towards HAQ domain dressing and grooming (P = 0.06) between M0 and M6 (3) visit in healed patients but not in no-healed patients. Concerning HRQoL, there were no difference for Mental and Physical component Scores of SF-36 but significant improvement of Bodily Pain score (P = 0.04) and Physical Role score (P = 0.05) between M0 and M6 (3) visit in patients with healed DU. The absence of healing was associated with significantly decreased work productivity (P = 0.05), whereas the performance in ADL was not significantly decreased (P = 0.15). Patients who were on sick-leave and who received some help for household tasks at the time of active DU were more likely to heal. Conclusion. For the first time, we provide prospective data with evidence that DU healing is associated with an improvement in hand function. Sick leave was associated with better healing of D

    Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities

    Get PDF
    PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex

    Principes et applications de la photocatalyse hétérogÚne : de la dépollution aux carburants solaires

    No full text
    National @ ECI2D+EPUInternational audienceLa photocatalyse hĂ©tĂ©rogĂšne est un domaine de la catalyse hĂ©tĂ©ogĂšne dĂ©couvert il y a plus de cinquante ans. Si quelques publications avant 1970 font mention de rĂ©actions photoactivĂ©es, celle qui fait rĂ©fĂ©rence est celle de Honda et Fujishima [1] en 1972 sur la dissociation photoĂ©lectrocatalytique de l’eau. Depuis cet instant, la photocatalyse hĂ©tĂ©rogĂšne a Ă©tĂ© mondialement Ă©tudiĂ©e pour une trĂšs large variĂ©tĂ© de rĂ©actions allant de l’oxydation mĂ©nagĂ©e Ă  l’oxydation totalede composĂ©s organiques, Ă  la production d’hydrogĂšne par dissociation de l’eau ou Ă  la rĂ©duction de CO2.Elle repose sur la capacitĂ© des semiconducteurs Ă  gĂ©nĂ©rer Ă  leur surface des espĂšces rĂ©actives sous irradiation lumineuse par transferts Ă©lectroniques entre les molĂ©cules adsorbĂ©es et le photocatalyseur. Aussi afin d’apprĂ©hender la globalitĂ© des processus photocatalytiques, il est nĂ©cessaire de rappeler les concepts de photonique des solides, d’électrochimie et de catalyse mis en jeu au cours d’un acte photocatalytique. Au cours des quarante derniĂšres annĂ©es, la recherche dans ce domaine s’est focalisĂ©e principalement sur les rĂ©actions d’oxydation de molĂ©cules organiques et d’espĂšces inorganiques. Il a ainsi Ă©tĂ© dĂ©montrĂ© que la quasi-totalitĂ© des fonctions chimiques organiques pouvait ĂȘtre oxydĂ©e par photocatalyse [2] et ainsi que la photocatalyse pouvait ĂȘtre considĂ©rĂ©e parmi les techniques d’oxydation avancĂ©es pour le traitement de l’air et celui de l’eau. L’hĂ©liophotocatalyse, qui repose sur l’utilisation du rayonnement solaire, permet de plus de classer la photocatalyse comme une technologie verte. De nombreuses rĂ©alisations permettent de l’illustrer. Pourtant le dĂ©veloppement de ces applications se heurte Ă  des limitations liĂ©es Ă  l’ingĂ©nierie comme la nĂ©cessitĂ© de supporter le photocatalyseur, la sĂ©paration des effluents du catalyseur ou l’optimisation de la capture de la lumiĂšre. De nouvelles solutions originales permettent de les contourner comme le dĂ©veloppement de supports Ă  base de fibres optiques par exemple [3].Outre les applications de dĂ©pollution, la photocatalyse prĂ©sente un potentiel pour la conversion de l’énergie solaire. Il est ainsi possible de produire de l’hydrogĂšne par rĂ©formage photocatalytique d’alcools ou dissociation de l’eau, ou de produire des « carburants solaires » par rĂ©duction photocatalytique de CO2 (photosynthĂšse artificielle). Dans ce cas il est nĂ©cessaire de modifier le photocatalyseur en lui ajoutant des cocatalyseurs pour lui confĂ©rer des fonctions catalytiques supplĂ©mentaires de rĂ©duction de protons/CO2 ou d’oxydation de l’eau. L’hydrogĂšne ainsi produit Ă  partir de l’énergie solaire peut servir par exemple Ă  alimenter directement une pile Ă  combustible [4]. Enfin et surtout la recherche fondamentale actuelle se focalise Ă©normĂ©ment sur la dĂ©couverte de nouveaux catalyseurs prĂ©sentant une activitĂ© sur une large gamme du spectre solaire (visible). Le dopage anionique ou cationique de photocatalyseurs comme TiO2 [5] ou le dĂ©veloppement de semiconducteurs comme Ta3N5 ou C3N4 ouvre des perspectives pour l’extension des rĂ©actions photocatalytiques dans le visible. Enfin le dĂ©veloppement rĂ©cent de nouvelles techniques operando (XAS et FTIR) permettent de mieux comprendre les processus opĂ©rant et d’orienter le dĂ©veloppement de nouveaux photocatalyseurs.[1] A. Fujishima, K. Honda, Nature 238 (1972) 37-38[2] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard and J.-M. Herrmann, Applied Catalysis B : Environmental, 39, (2002), 75-90[3] P.-A. Bourgeois, E. Puzenat, L. Peruchon, F. Simonet, D. Chevalier, E. Deflin, C. Brochier, C.l Guillard Applied Catalysis B : Environmental, 128 (2012) 171-178[4] J. Rodriguez, P.-X. Thivel, E. Puzenat International Journal of Hydrogen Energy 38 (2013) 15-22[5] S. Ould-Chikh, O. Proux, P. Afanasiev, L. Khrouz, M. N. Hedhili, D. H. Anjum, ,M. Hard, C. Geantet, J.-M. Basset, E. Puzenat, ChemSusChem, 7, (2014), 5, 1361-137

    Principes et applications de la photocatalyse hétérogÚne : de la dépollution aux carburants solaires

    No full text
    SSCI-VIDE+ECI2D+EPUInternational audienceLa photocatalyse hĂ©tĂ©rogĂšne est un domaine de la catalyse hĂ©tĂ©ogĂšne dĂ©couvert il y a plus de cinquante ans. Si quelques publications avant 1970 font mention de rĂ©actions photoactivĂ©es, celle qui fait rĂ©fĂ©rence est celle de Honda et Fujishima [1] en 1972 sur la dissociation photoĂ©lectrocatalytique de l’eau. Depuis cet instant, la photocatalyse hĂ©tĂ©rogĂšne a Ă©tĂ© mondialement Ă©tudiĂ©e pour une trĂšs large variĂ©tĂ© de rĂ©actions allant de l’oxydation mĂ©nagĂ©e Ă  l’oxydation totale, Ă  la production d’hydrogĂšne par dissociation de l’eau ou Ă  la rĂ©duction de CO2. Elle repose sur la capacitĂ© des semiconducteurs Ă  gĂ©nĂ©rer Ă  leur surface des espĂšces rĂ©actives sous irradiation lumineuse par transferts Ă©lectroniques entre les molĂ©cules adsorbĂ©es et le photocatalyseur. Aussi afin d’apprĂ©hender la globalitĂ© des processus photocatalytiques, il est nĂ©cessaire de rappeler les concepts de photonique des solides, d’électrochimie et de catalyse mis en jeu au cours d’un acte photocatalytique. Outre les applications de dĂ©pollution, la photocatalyse prĂ©sente un potentiel pour la conversion de l’énergie solaire. Il est ainsi possible de produire de l’hydrogĂšne par rĂ©formage photocatalytique d’alcools ou dissociation de l’eau, ou de produire des « carburants solaires » par rĂ©duction photocatalytique de CO2 (photosynthĂšse artificielle). L’hydrogĂšne ainsi produit Ă  partir de l’énergie solaire peut servir par exemple Ă  alimenter directement une pile Ă  combustible [4]. Enfin le dĂ©veloppement rĂ©cent de nouvelles techniques operando (XAS et FTIR) permettent de mieux comprendre les processus opĂ©rant et d’orienter le dĂ©veloppement de nouveaux photocatalyseurs [3]

    Relationship between working function of metals deposited on photocatalysts and hydrogen production activity

    No full text
    SSCI-VIDE+CATREN+EPUNational audienceIntroductionThe modification of TiO2 with noble-metal cocatalyst can enhance the overall photocatalytic efficiency by acting like an electron sink to separate the electrons and holes, resulting in increasing the overall photoredox reaction [1].Therefore, the metal photodeposition is considered for preparing the heterogeneous catalyst. Metal-ions are reduced by photogenerated electrons on the semiconductor. This method can be enhanced by adding aqueous alcohol as sacrificial electron donor. Most of research have been focused on the net photoefficiency or the effect of physical properties for the photoactivity [2,3]. However, the metal behavior for H2 formation on alcohol photooxidation is not well understood.Here, a metal-photodeposition method was proposed to access the effective noble-metal nanoparticles through monitoring the amount of evolved H2. Metal precursors including Ag, Au, Cu, Ir, Ni, Pd, Pt, Ru and Rh were applied on TiO2 anatase to study photocatalytic H2 generation under UV irradiation with 2-propanol as sacrificial agent. The generation of carbon products, such as propane and propene was also evaluated to categorize the role of metals.ExperimentalPhotodeposition of metal on TiO2 anatase, TiO2 rutile, ZnO, CdS and WO3 was performed in a photoreactor. H2Cl6Pt.6H2O, PdCl2, RhCl3, IrCl3, HAuCl4, Cu(NO3)2.3H2O, AgNO3, OsCl3, and Ni(NO3)2.6H2O were used as metal precursor of Pt, Pd, Ir, Rh, Au, Cu, Ag, Os and Ni, respectively. Results and DiscussionWe measured the PY for the seven M/TiO2 at various temperatures between 10°C and 45°C. All of the photocatalysts follow an Arrhenius law in this range. To measured PY at four temperatures the test is conducted for at least 20 hours. We confirmed through XPS analysis that during this period the M were stable. In addition to the PY, the activity can be therefore estimated with the apparent activation energy (Ea,app) and a pre-exponential factor (Aapp). Various Ea,app and Aapp were obtained depending on the M.The lowest Ea,app were obtained for the Pt and the Os co-catalysts with Ea,app=8 kJ/mol. It corresponds to the two best catalysts for the electrocatalytic HER. It concludes that the H-H recombination is not the rate limiting step. It must be the H+ reduction and it is due either to a limiting amount of electrons or to the electrocatalytic activity of the M. A microkinetics study leads to the same conclusion with the PY depending only on the rate constant of electron transfer from SC to M or proton reduction. We are currently studying the electronic structure of the M/TiO2 with a methodology reported in Maheu et al. to discriminate if the key step is the electronic transfer or the H+ reduction. [4]As Norskov principal, Pt, Pd, Rh and Ir have a thermal-neutral of H2 chemisorption energy (ΔEH), resulting in produce high amount of H2 as shown in Fig. 2. The Classification of metal behavior was demonstrated in Table 1. Considering minimum and maximum workfunction of the different metals, the trend seems to obey to a threshold function ie below a value, the metals have a low activity and above this value the activity increases rapidly with the increase of the work function. Considering this, we assume that the electron transfer to metal is the limiting step.By using Fermi-Dirac statistics, it was possible to predict that the fraction of photogenerated electrons from TiO2 to metal nanoparticles is governed by the difference between Fermi level of TiO2 and workfunction of the metal. This observation has been confirm by UV photoemission spectroscopy allowing to characterize electronic structure at metal/TiO2 interface. ConclusionsThe H2 chemisorption energy (ΔEH) has influence in H2 production The metals with balancing of ΔEH (Pt, Pd, Rh and Ir) reveal high amount of H2. The photooxidation of 2-propanol for H2 evolution over different metallic types can be classified for three proposed mechanism pathway. But moreover we demonstrate that the photocatalytic activity of M/TiO2 is governed by the difference between Fermi level of TiO2 and metal workfunction. This fundamental can be applied to be effective for metal with low work function such as Ni or Sn, by using semiconductor with sufficient higher Fermi level.[1] K. Lee, A. Mazare, P. Schmuki, Chem. Rev., 114, 9385 (2014)[2]E.P. MeliĂĄn, C.R. LĂłpez, A.O. MĂ©ndez, O.G. DĂ­az, M.N. SuĂĄrez, J.M. Doña RodrĂ­guez, J.A. NavĂ­o, D. FernĂĄndez Hevia, D., Int. J. Hydrog. Energy. 38 (2013) 11737.[3] J. Ohyama, A. Yamamoto, K. Teramura, T. Shishido, T. Tanaka, ACS Catal., 1 (2011) 187[4] J.K. NĂžrskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152 (2005). Trends in the Exchange Current for Hydrogen Evolution. 152, J23–J26

    Principes et applications de la photocatalyse hétérogÚne : de la dépollution aux carburants solaires

    No full text
    National @ ECI2D+EPUInternational audienceLa photocatalyse hĂ©tĂ©rogĂšne est un domaine de la catalyse hĂ©tĂ©ogĂšne dĂ©couvert il y a plus de cinquante ans. Si quelques publications avant 1970 font mention de rĂ©actions photoactivĂ©es, celle qui fait rĂ©fĂ©rence est celle de Honda et Fujishima [1] en 1972 sur la dissociation photoĂ©lectrocatalytique de l’eau. Depuis cet instant, la photocatalyse hĂ©tĂ©rogĂšne a Ă©tĂ© mondialement Ă©tudiĂ©e pour une trĂšs large variĂ©tĂ© de rĂ©actions allant de l’oxydation mĂ©nagĂ©e Ă  l’oxydation totalede composĂ©s organiques, Ă  la production d’hydrogĂšne par dissociation de l’eau ou Ă  la rĂ©duction de CO2.Elle repose sur la capacitĂ© des semiconducteurs Ă  gĂ©nĂ©rer Ă  leur surface des espĂšces rĂ©actives sous irradiation lumineuse par transferts Ă©lectroniques entre les molĂ©cules adsorbĂ©es et le photocatalyseur. Aussi afin d’apprĂ©hender la globalitĂ© des processus photocatalytiques, il est nĂ©cessaire de rappeler les concepts de photonique des solides, d’électrochimie et de catalyse mis en jeu au cours d’un acte photocatalytique. Au cours des quarante derniĂšres annĂ©es, la recherche dans ce domaine s’est focalisĂ©e principalement sur les rĂ©actions d’oxydation de molĂ©cules organiques et d’espĂšces inorganiques. Il a ainsi Ă©tĂ© dĂ©montrĂ© que la quasi-totalitĂ© des fonctions chimiques organiques pouvait ĂȘtre oxydĂ©e par photocatalyse [2] et ainsi que la photocatalyse pouvait ĂȘtre considĂ©rĂ©e parmi les techniques d’oxydation avancĂ©es pour le traitement de l’air et celui de l’eau. L’hĂ©liophotocatalyse, qui repose sur l’utilisation du rayonnement solaire, permet de plus de classer la photocatalyse comme une technologie verte. De nombreuses rĂ©alisations permettent de l’illustrer. Pourtant le dĂ©veloppement de ces applications se heurte Ă  des limitations liĂ©es Ă  l’ingĂ©nierie comme la nĂ©cessitĂ© de supporter le photocatalyseur, la sĂ©paration des effluents du catalyseur ou l’optimisation de la capture de la lumiĂšre. De nouvelles solutions originales permettent de les contourner comme le dĂ©veloppement de supports Ă  base de fibres optiques par exemple [3].Outre les applications de dĂ©pollution, la photocatalyse prĂ©sente un potentiel pour la conversion de l’énergie solaire. Il est ainsi possible de produire de l’hydrogĂšne par rĂ©formage photocatalytique d’alcools ou dissociation de l’eau, ou de produire des « carburants solaires » par rĂ©duction photocatalytique de CO2 (photosynthĂšse artificielle). Dans ce cas il est nĂ©cessaire de modifier le photocatalyseur en lui ajoutant des cocatalyseurs pour lui confĂ©rer des fonctions catalytiques supplĂ©mentaires de rĂ©duction de protons/CO2 ou d’oxydation de l’eau. L’hydrogĂšne ainsi produit Ă  partir de l’énergie solaire peut servir par exemple Ă  alimenter directement une pile Ă  combustible [4]. Enfin et surtout la recherche fondamentale actuelle se focalise Ă©normĂ©ment sur la dĂ©couverte de nouveaux catalyseurs prĂ©sentant une activitĂ© sur une large gamme du spectre solaire (visible). Le dopage anionique ou cationique de photocatalyseurs comme TiO2 [5] ou le dĂ©veloppement de semiconducteurs comme Ta3N5 ou C3N4 ouvre des perspectives pour l’extension des rĂ©actions photocatalytiques dans le visible. Enfin le dĂ©veloppement rĂ©cent de nouvelles techniques operando (XAS et FTIR) permettent de mieux comprendre les processus opĂ©rant et d’orienter le dĂ©veloppement de nouveaux photocatalyseurs.[1] A. Fujishima, K. Honda, Nature 238 (1972) 37-38[2] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard and J.-M. Herrmann, Applied Catalysis B : Environmental, 39, (2002), 75-90[3] P.-A. Bourgeois, E. Puzenat, L. Peruchon, F. Simonet, D. Chevalier, E. Deflin, C. Brochier, C.l Guillard Applied Catalysis B : Environmental, 128 (2012) 171-178[4] J. Rodriguez, P.-X. Thivel, E. Puzenat International Journal of Hydrogen Energy 38 (2013) 15-22[5] S. Ould-Chikh, O. Proux, P. Afanasiev, L. Khrouz, M. N. Hedhili, D. H. Anjum, ,M. Hard, C. Geantet, J.-M. Basset, E. Puzenat, ChemSusChem, 7, (2014), 5, 1361-137

    De l'intervention de la catalyse pour la protection de l'environnement

    No full text
    • 

    corecore