4 research outputs found

    Bioactive Endophytes Warrant Intensified Exploration and Conservation

    Get PDF
    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15–30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance

    Stirred-tank leaching of coarse-grained waste, printed circuit boards with Acidithiobacillus ferrooxidans

    No full text
    Stirred tank leaching of metals from coarse-grained waste, printed circuit boards (WPCB) used Acidithiobacillus ferrooxidans (A. ferrooxidans) at ambient temperature (20-35°C). The effect of the baffle size, WPCB concentration, and inoculation volume was tested. 95.92% of Cu, 93.53% of Al, 92.58% of Zn, 65.27% of Ni, and 95.33% of Sn in WPCBs were leached under the optimal conditions: no baffle, WPCB concentration of 5.0% (w/w), and inoculation volume of 5% (v/v). The alkaline substance and reactivity metal of WPCBs, and the oxidation of Fe2+, consume H+. Adding acid can maintain the pH value of the leaching solution, which is conducive to the growth and reproduction of the bacteria and improves the leaching efficiency of WPCBs. The second-order dynamics model can describe the acid consumption in the bioleaching process of coarse-grained WPCBs. Moreover, the Avrami equation can successfully explain the bioleaching kinetics of Cu, Al, Zn, Ni, and Sn from the coarse-grained WPCBs. The key factors controlling the bioleaching of coarse-grained WPCBs are metal reactivity and specific surface area. These results revealed that bioleaching metals from coarse-grained WPCBs using A.ferrooxidans is feasible, and has important significance to guiding its industrialization

    Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects

    Get PDF
    BACKGROUND: Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. METHODOLOGY/PRINCIPAL FINDINGS: Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. CONCLUSIONS/SIGNIFICANCE: The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs
    corecore