37 research outputs found

    Efficient Conversion of Astrocytes to Functional Midbrain Dopaminergic Neurons Using a Single Polycistronic Vector

    Get PDF
    Direct cellular reprogramming is a powerful new tool for regenerative medicine. In efforts to understand and treat Parkinson's Disease (PD), which is marked by the degeneration of dopaminergic neurons in the midbrain, direct reprogramming provides a valuable new source of these cells. Astrocytes, the most plentiful cells in the central nervous system, are an ideal starting population for the direct generation of dopaminergic neurons. In addition to their potential utility in cell replacement therapies for PD or in modeling the disease in vitro, astrocyte-derived dopaminergic neurons offer the prospect of direct in vivo reprogramming within the brain. As a first step toward this goal, we report the reprogramming of astrocytes to dopaminergic neurons using three transcription factors – ASCL1, LMX1B, and NURR1 – delivered in a single polycistronic lentiviral vector. The process is efficient, with 18.2±1.5% of cells expressing markers of dopaminergic neurons after two weeks. The neurons exhibit expression profiles and electrophysiological characteristics consistent with midbrain dopaminergic neurons, notably including spontaneous pacemaking activity, stimulated release of dopamine, and calcium oscillations. The present study is the first demonstration that a single vector can mediate reprogramming to dopaminergic neurons, and indicates that astrocytes are an ideal starting population for the direct generation of dopaminergic neurons

    Chloride accumulation in mammalian olfactory sensory neurons

    No full text
    The generation of an excitatory receptor current in mammalian olfactory sensory neurons (OSNs) involves the sequential activation of two distinct types of ion channels: cAMP-gated Ca(2+)-permeable cation channels and Ca(2+)-gated Cl(-) channels, which conduct a depolarizing Cl(-) efflux. This unusual transduction mechanism requires an outward-directed driving force for Cl(-), established by active accumulation of Cl(-) within the lumen of the sensory cilia. We used two-photon fluorescence lifetime imaging microscopy of the Cl(-)-sensitive dye 6-methoxy-quinolyl acetoethyl ester to measure the intracellular Cl(-) concentration in dendritic knobs of OSNs from mice and rats. We found a uniform intracellular Cl(-) concentration in the range of 40-50 mm, which is indicative of active Cl(-) accumulation. Functional assays and PCR experiments revealed that NKCC1-mediated Cl(-) uptake through the apical membrane counteracts Cl(-) depletion in the sensory cilia, and thus maintains the responsiveness of OSNs to odor stimulation. To permit Cl(-) accumulation, OSNs avoid the "chloride switch": they do not express KCC2, the main Cl(-) extrusion cotransporter operating in neurons of the adult CNS. Cl(-) accumulation provides OSNs with the driving force for the depolarizing Cl(-) current that is the basis of the low-noise receptor current in these neurons

    CA"2"+-aktivierte Cl"--Kanaele und Cl"--Akkumulation in Sinneszellen der Ratte

    No full text
    Available from TIB Hannover: RA 831(4113) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore