7 research outputs found

    Ionic effects on the electric field needed to orient dielectric lamellae

    Full text link
    We consider the effect of mobile ions on the applied potential needed to reorient a lamellar system of two different materials placed between two planar electrodes. The reorientation occurs from a configuration parallel to the electrodes favored by surface interactions to an orientation perpendicular to the electrodes favored by the electric field. The system consists of alternating A and B layers with different dielectric constants. The mobile ions are assumed to be insoluble in the B layers and hence confined to the A layers. We find that the ions reduce the needed voltage most strongly when they are constrained such that each A lamella is electrically neutral. In this case, a macroscopic separation of charge and its concomitant lowering of free energy, is attained only in the perpendicular orientation. When the ions are free to move between different A layers, such that charge neutrality is only required globally, their effect is smaller and depends upon the preferred surface interaction of the two materials. Under some conditions, the addition of ions can actually stabilize the parallel configuration. Our predictions are relevant to recent experiments conducted on lamellar phases of diblock copolymer films with ionic selective impurities.Comment: To be published in the Journal of Chemical Physic

    Polygenic risk of spasmodic dysphonia is associated with vulnerable sensorimotor connectivity

    No full text
    Spasmodic dysphonia (SD), or laryngeal dystonia, is an isolated task-specific dystonia of unknown causes and pathophysiology that selectively affects speech production. Using next-generation whole-exome sequencing in SD patients, we computed polygenic risk score from 1804 genetic markers based on a genome-wide association study in another form of similar task-specific focal dystonia, musician's dystonia. We further examined the associations between the polygenic risk score, resting-state functional connectivity abnormalities within the sensorimotor network, and SD clinical characteristics. We found that the polygenic risk of dystonia was significantly associated with decreased functional connectivity in the left premotor/primary sensorimotor and inferior parietal cortices in SD patients. Reduced connectivity of the inferior parietal cortex was correlated with the age of SD onset. The polygenic risk score contained a significant number of genetic variants lying near genes related to synaptic transmission and neural development. Our study identified a polygenic contribution to the overall genetic risk of dystonia in the cohort of SD patients. Associations between the polygenic risk and reduced functional connectivity of the sensorimotor and inferior parietal cortices likely represent an endophenotypic imaging marker of SD, while genes involved in synaptic transmission and neuron development may be linked to the molecular pathophysiology of this disorder
    corecore