398 research outputs found

    Influence of carbon substitution on the heat transport in single crystalline MgB2

    Full text link
    We report data on the thermal conductivity \kappa(T,H) in the basal plane of hexagonal single-crystalline and superconducting Mg(B_{1-x}C_x)_2 (x= 0.03, 0.06) at temperatures between 0.5 and 50 K, and in external magnetic fields H between 0 and 50 kOe. The substitution of carbon for boron leads to a considerable reduction of the electronic heat transport, while the phonon thermal conductivity seems to be much less sensitive to impurities. The introduction of carbon enhances mostly the intraband scattering in the \sigma-band. In contrast to the previously observed anomalous behavior of pure MgB2_2, the Wiedemann-Franz law is valid for Mg(B_0.94 C_0.06)_2 at low temperatures.Comment: 4 pages, 4 figures. Final version to appear in Phys. Rev.

    Disorder effects on the superconducting properties of BaFe1.8_{1.8}Co0.2_{0.2}As2_2 single crystals

    Full text link
    Single crystals of superconducting BaFe1.8_{1.8}Co0.2_{0.2}As2_2 were exposed to neutron irradiation in a fission reactor. The introduced defects decrease the superconducting transition temperature (by about 0.3 K) and the upper critical field anisotropy (e.g. from 2.8 to 2.5 at 22 K) and enhance the critical current densities by a factor of up to about 3. These changes are discussed in the context of similar experiments on other superconducting materials

    Experimental confirmation of the low B isotope coefficient in MgB2

    Full text link
    Recent investigations have shown that the first proposed explanations of the disagreement between experimental and theoretical value of isotope coefficient in MgB2 need to be reconsidered. Considering that in samples with residual resistivity of few mu-Ohm cm critical temperature variations produced by disorder effects can be comparable with variations due to the isotopic effect, we adopt a procedure in evaluating the B isotope coefficient which take account of these effects, obtaining a value which is in agreement with previous results and then confirming that there is something still unclear in the physics of MgB2.Comment: 8 pages, 3 figures Title has been changed A statement has been added in page 7 of the pdf file "Finally we would..." Reference 21 has been added Figure 1 anf Figure 2 have been change

    Anisotropic critical currents in FeSe0.5Te0.5 films and the influence of neutron irradiation

    Full text link
    We report on measurements of the superconducting properties of FeSe05Te05 thin films grown on lanthanum aluminate. The films have high transition temperatures (above 19 K) and sharp resistive transitions in fields up to 15 T. The temperature dependence of the upper critical field and the irreversibility lines are steep and anisotropic, as recently reported for single crystals. The critical current densities, assessed by magnetization measurements in a vector VSM, were found to be well above 10^9 Am-2 at low temperatures. In all samples, the critical current as a function of field orientation has a maximum, when the field is oriented parallel to the film surface. The maximum indicates the presence of correlated pinning centers. A minimum occurs in three films, when the field is applied perpendicular to the film plane. In the forth film, instead, a local maximum caused by c-axis correlated pinning centers was found at this orientation. The irradiation of two films with fast neutrons did not change the properties drastically, where a maximum enhancement of the critical current by a factor of two was found

    Neutron Irradiation of Sm-1111

    Full text link
    SmFeAsO1x_{1-x}Fx_x was irradiated in a fission reactor to a fast (E > 0.1 MeV) neutron fluence of 4x10^21{21} m2^{-2}. The introduced defects increase the normal state resistivity due to a reduction in the mean free path of the charge carriers. This leads to an enhancement of the upper critical field at low temperatures. The critical current density within the grains, Jc, increases upon irradiation. The second maximum in the field dependence of Jc disappears and the critical current density becomes a monotonically decreasing function of the applied magnetic field

    Effect of two bands on critical fields in MgB2 thin films with various resistivity values

    Full text link
    Upper critical fields of four MgB2 thin films were measured up to 28 Tesla at Grenoble High Magnetic Field Laboratory. The films were grown by Pulsed Laser Deposition and showed critical temperatures ranging between 29.5 and 38.8 K and resistivities at 40 K varying from 5 to 50 mWcm. The critical fields in the perpendicular direction turned out to be in the 13-24 T range while they were estimated to be in 42-57 T the range in ab-planes. In contrast to the prediction of the BCS theory, we did not observe any saturation at low temperatures: a linear temperature dependence is exhibited even at lowest temperatures at which we made the measurements. Moreover, the critical field values seemed not to depend on the normal state resistivity value. In this paper, we analyze these data considering the multiband nature of superconductivity in MgB2 We will show how the scattering mechanisms that determine critical fields and resistivity can be different.Comment: 17 pages, 3 figure

    From antiferromagnetism to superconductivity in Fe 1+y(Te1-x,Sex) (0 < x < 0.20): a neutron powder diffraction analysis

    Full text link
    The nuclear and magnetic structure of Fe1+y(Te1-x,Sex) (0 < x < 0.20) compounds was analyzed between 2 K and 300 K by means of Rietveld refinement of neutron powder diffraction data. Samples with x < 0.075 undergo a tetragonal to monoclinic phase transition at low temperature, whose critical temperature decreases with increasing Se content; this structural transition is strictly coupled to a long range antiferromagnetic ordering at the Fe site. Both the transition to a monoclinic phase and the long range antiferromagnetism are suppressed for 0.10 < x < 0.20. The onset of the structural and of the magnetic transition remains coincident with the increase of Se substitution. The low temperature monoclinic crystal structure has been revised. Superconductivity arises for x > 0.05, therefore a significant region where superconductivity and long range antiferromagnetism coexist is present in the pseudo-binary FeTe - FeSe phase diagram.Comment: 33 pages, 4 tables, 13 figure

    Microstructural evolution throughout the structural transition in 1111 oxy-pnictides

    Full text link
    The microstructural evolution throughout the first order tetragonal to orthorhombic structural transition is analyzed by powder diffraction analysis for two different systems belonging to the class of compounds referred to as 1111 oxy-pnictides: (La1-yYy)FeAsO and SmFeAs(O1-xFx). Both systems are characterized by a similar behaviour: on cooling microstrain along the tetragonal hh0 direction takes place and increases as the temperature is decreased. Just above the structural transition microstrain reaches its maximum value and then is abruptly suppressed by symmetry breaking. No volume discontinuity throughout the first order transition is observed and a groupsubgroup relationship holds between the tetragonal and the orthorhombic structures, thus suggesting that orbital ordering drives symmetry breaking. Microstrain reflects a distribution of lattice parameters in the tetragonal phase and explains the occurrence of anisotropic properties commonly attributed to nematic correlations; in this scenario the nematic behaviour is induced by the tendency towards ordering of Fe orbitals

    Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

    Get PDF
    Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping

    Two-band effects in transport properties of MgB2

    Full text link
    We present resistivity and thermal conductivity measurements on bulk samples, prepared either by a standard method or by a one-step technique. The latter samples, due to their high density and purity, show residual resistivity values as low as 0.5 mW cm and thermal conductivity values as high as 215 W/mK, higher than the single crystal ones. Thermal and electrical data of all the samples are analysed in the framework of the Bloch-Gruneisen equation giving reliable parameter values. In particular the temperature resitivity coefficient, obtained both from resistivity and thermal conductivity, in the dirty sample comes out ten time larger than in the clean ones. This result supports the hypothesis of ref. [1] that p and s bands conduct in parallel, prevailing p conduction in clean samples and s conduction in dirty samples .Comment: 8 pages, 5 figures, Presented at the BOROMAG workshop, June 17-19 2002, Genoa, Ital
    corecore