129 research outputs found

    Generalized periodic discharges: Pathophysiology and clinical considerations

    Get PDF
    Generalized periodic discharges (GPDs) are commonly encountered in metabolic encephalopathy and cerebral hypoxia/ischemia. The clinical significance of this EEG pattern is indistinct, and it is unclear whether treatment with antiepileptic drugs is beneficial. In this study, we discuss potential pathophysiological mechanisms. Based on the literature, supplemented with simulations in a minimal computational model, we conclude that selective synaptic failure or neuronal damage of inhibitory interneurons, leading to disinhibition of excitatory pyramidal cells, presumably plays a critical role. Reversibility probably depends on the potential for functional recovery of these interneurons. Whether antiepileptic drugs are helpful for regaining function is unclea

    Kleine signalen van grote waarde

    Get PDF

    Prediction in cultured cortical neural networks

    Get PDF
    Theory suggest that networks of neurons may predict their input. Prediction may underlie most aspects of information processing and is believed to be involved in motor and cognitive control and decision-making. Retinal cells have been shown to be capable of predicting visual stimuli, and there is some evidence for prediction of input in the visual cortex and hippocampus. However, there is no proof that the ability to predict is a generic feature of neural networks. We investigated whether random in vitro neuronal networks can predict stimulation, and how prediction is related to short- and long-term memory. To answer these questions, we applied two different stimulation modalities. Focal electrical stimulation has been shown to induce long-term memory traces, whereas global optogenetic stimulation did not. We used mutual information to quantify how much activity recorded from these networks reduces the uncertainty of upcoming stimuli (prediction) or recent past stimuli (short-term memory). Cortical neural networks did predict future stimuli, with the majority of all predictive information provided by the immediate network response to the stimulus. Interestingly, prediction strongly depended on short-term memory of recent sensory inputs during focal as well as global stimulation. However, prediction required less short-term memory during focal stimulation. Furthermore, the dependency on short-term memory decreased during 20 h of focal stimulation, when long-term connectivity changes were induced. These changes are fundamental for long-term memory formation, suggesting that besides short-term memory the formation of long-term memory traces may play a role in efficient prediction.</p

    Quantification of EEG reactivity in comatose patients

    Get PDF
    OBJECTIVE: EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. METHODS: In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. RESULTS: The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. CONCLUSION: Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. SIGNIFICANCE: Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity

    A Biophysical Model for Cytotoxic Cell Swelling

    Get PDF
    We present a dynamic biophysical model to explain neuronal swelling underlying cytotoxic edema in conditions of low energy supply, as observed in cerebral ischemia. Our model contains Hodgkin—Huxley-type ion currents, a recently discovered voltage-gated chloride flux through the ion exchanger SLC26A11, active KCC2-mediated chloride extrusion, and ATP-dependent pumps. The model predicts changes in ion gradients and cell swelling during ischemia of various severity or channel blockage with realistic timescales. We theoretically substantiate experimental observations of chloride influx generating cytotoxic edema, while sodium entry alone does not. We show a tipping point of Na+/K+-ATPase functioning, where below cell volume rapidly increases as a function of the remaining pump activity, and a Gibbs–Donnan-like equilibrium state is reached. This precludes a return to physiological conditions even when pump strength returns to baseline. However, when voltage-gated sodium channels are temporarily blocked, cell volume and membrane potential normalize, yielding a potential therapeutic strategy

    Preservation of thalamocortical circuitry is essential for good recovery after cardiac arrest

    Get PDF
    Continuous electroencephalographam (EEG) monitoring contributes to prediction of neurological outcome in comatose cardiac arrest survivors. While the phenomenology of EEG abnormalities in postanoxic encephalopathy is well known, the pathophysiology, especially the presumed role of selective synaptic failure, is less understood. To further this understanding, we estimate biophysical model parameters from the EEG power spectra from individual patients with a good or poor recovery from a postanoxic encephalopathy. This biophysical model includes intracortical, intrathalamic, and corticothalamic synaptic strengths, as well as synaptic time constants and axonal conduction delays. We used continuous EEG measurements from hundred comatose patients recorded during the first 48 h postcardiac arrest, 50 with a poor neurological outcome [cerebral performance category (CPC = 5)] and 50 with a good neurological outcome (CPC = 1). We only included patients that developed (dis-)continuous EEG activity within 48 h postcardiac arrest. For patients with a good outcome, we observed an initial relative excitation in the corticothalamic loop and corticothalamic propagation that subsequently evolved towards values observed in healthy controls. For patients with a poor outcome, we observed an initial increase in the cortical excitation-inhibition ratio, increased relative inhibition in the corticothalamic loop, delayed corticothalamic propagation of neuronal activity, and severely prolonged synaptic time constants that did not return to physiological values. We conclude that the abnormal EEG evolution in patients with a poor neurological recovery after cardiac arrest may result from persistent and selective synaptic failure that includes corticothalamic circuitry and also delayed corticothalamic propagation.</p
    • …
    corecore