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� Quantitative EEG features are used to classify reactive and non-reactive EEGs.
� Probabilities based on quantitative EEG features reflect the degree of reactivity.
� Quantitative methods may increase reproducibility and objectivity of EEG reactivity assessment.

a b s t r a c t

Objective: EEG reactivity is an important predictor of outcome in comatose patients. However, visual
analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches.
Methods: In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative
EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after
the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values
estimated using combinations of these parameters. The accuracy of probability values as a reactivity clas-
sifier was evaluated against the consensus assessment of three expert clinical electroencephalographers
using visual analysis.
Results: The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta,
alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial
agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as
inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured
by the inter-experts’ agreement regarding reactivity for each individual case.
Conclusion: Automated quantitative EEG approaches based on probabilistic description of spectral tem-
poral symmetry reliably quantify EEG reactivity.
Significance: Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering
increased objectivity.
� 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Accurate prediction of neurologic outcome is essential for the
care of comatose patients, particularly to guide decisions about
whether or not to continue supportive care. Prognostication in
comatose patients is based on both clinical and
electrophysiological parameters (Gaspard et al., 2014;
Tjepkema-Cloostermans et al., 2015; Wijdicks et al., 2006). One
of these variables is the reactivity of the EEG to external stimula-
tion, which has emerged as an important predictor of improved
outcome in a wide variety of clinical conditions, including trau-
matic and anoxic brain injury (Logi et al., 2011; Rossetti et al.,
2010). In multimodal prediction of outcome after anoxic brain
injury, the information provided by EEG reactivity complements
the information derived from clinical examination and
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somatosensory evoked potentials (SSEP) (Oddo and Rossetti, 2014;
Rossetti et al., 2010).

EEG reactivity is generally regarded as presence of any change
in frequency or amplitude of the EEG background pattern, detected
after the application of an external stimulus (Young, 2000),
although no consensus exists about the detailed characteristics
or exact timing or duration of changes involved in a responsive
EEG. External stimulation often includes applying auditory stimuli
(i.e. shouting or clapping), somatosensory stimuli (i.e. applying
pressure to the nail bed or supraorbital nerve) or visual stimuli
(i.e. passive eye opening), but there is no consensus about the par-
ticular stimulus or stimuli that need to be applied.

In current practice, EEG reactivity in comatose patients is
assessed by visual comparison of EEG segments before and after
the time of stimulus administration. However, visual EEG analysis
can be difficult and is prone to subjectivity (Gerber et al., 2008;
Noirhomme et al., 2014; Young et al., 1997).

By providing an objective assessment of the EEG signal and
detecting subtle changes in the signal that might escape visual
assessment (Claassen et al., 2004; Vespa et al., 1997), quantitative
EEG (qEEG) analysis can assist the interpretation of the EEG
(Lodder and van Putten, 2013; Nuwer, 1997).

In the present study, several quantitative approaches that score
differences in signal characteristics are compared with visual anal-
ysis of EEG reactivity by experts. With this work, we aimed to
explore the possibility for automated quantification of EEG reactiv-
ity in comatose patients.

2. Methods

2.1. EEG data

We used EEG recordings of 70 consecutive comatose patients
that were admitted to the ICU and underwent continuous EEG
and stimulation to assess reactivity for neurological prognostica-
tion. Coma was clinically defined as the absence of meaningful
clinical response to noxious stimulation (i.e. withdrawal or better
response on the motor component of the Glasgow Coma Scale
(Wijdicks et al., 2006)). At the time of EEG recording, some patients
were sedated with midazolam, propofol or a combination of these
and some were hypothermic.

The set of EEG recordings was selected from the digital ICU EEG
databases of Yale-New Haven Hospital (New Haven, Connecticut,
USA), Massachusetts General Hospital (Boston, Massachusetts,
USA) and Medisch Spectrum Twente (Enschede, the Netherlands).
The institutional review boards of participating institutions did
not require informed consent and approved the research protocols
under which the study was conducted.

Recordings included standard arrangements of 19 electrodes
placed according to the international 10–20 system. Recordings
were routinely performed with commercially available
medical-grade EEG equipment, with a sampling frequency of 200,
256 or 512 Hz.

EEG reactivity was tested as part of routine clinical care at each
institution using a variety of external stimuli. Stimuli were admin-
istered sequentially and included calling the subject’s name, clap-
ping hands, shaking the subject, administration of central or
peripheral noxious stimuli (nostril tickle and/or nail bed pressure),
and passive eye opening. The sequence of stimuli takes less than
30 s and could have been interrupted in case the subject showed
a clinical response. We cannot exclude some discrepancy between
the technicians’ and the treating physicians’ clinical assessment,
but followed the treating physicians’ opinion. One epoch of stimu-
lation was selected for every patient. The time of onset of reactivity
testing, i.e. start of stimulation, was determined using the notes in
the original EEG file and confirmed by reviewing the corresponding
Please cite this article in press as: Hermans MC et al. Quantification of EEG re
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video recording. Since the goal of this study was to develop a quan-
titative method for assessing reactivity that is competitive with the
expert’s opinion regarding reactivity, and acknowledging the vari-
ability in the way stimulation was provided to patients, rather than
pursuing its use for prognostication, information about outcome
was not collected. In addition, no attempt was made to select
patients stimulated in any specific or uniform manner, or to ensure
uniformity of testing conditions or methods of external
stimulation.

EEG recordings with prominent artifacts prior to stimulation
were excluded. EEG recordings with suppression-burst were also
excluded from the analysis as spontaneous short-term variation
in the duration and spectral content of the burst between the
pre- and post-stimulation epoch may affect the performance of
the detector.

In addition to the selected test cases, a verifications set of 34
2-min EEG clips was randomly selected from comatose patients
with background better than suppression-burst between 12 am
and 6 am, at a time no active stimulation was provided.

2.2. Visual scoring

Reactivity of each test case was assessed by three independent
practicing, board certified, clinical neurophysiologists routinely
involved in prognostication of patients with coma. These expert
EEG readers evaluated responsiveness using standard visual analy-
sis of the total EEG recording, under ordinary clinical conditions,
without time constraints. During analysis, the expert readers were
able to manipulate the 19 channel EEG by changing filters, mon-
tages, signal gain, and the amount of data shown on a single EEG
review screen.

Before assessment, the expert readers agreed to use a reactivity
score in which each case was classified as ‘Reactive’, ‘Non-reactive’
or ‘Unclear’. The presence of stimulus-induced rhythmic, periodic,
or ictal discharges (SIRPIDS) was coded separately but regarded as
reactivity. Presence of a change in electromyographic (EMG) activ-
ity by itself without corresponding EEG changes was regarded as
non-reactive. Besides this common set of rules, experts were free
to determine what represented reactivity as they would in routine
clinical practice. For purposes of model training, cases were catego-
rized according to the majority (2/3) of the experts’ opinion. Cases
in which no consensus was reached were classified as unclear
reactivity.

2.3. Quantitative analysis

For each EEG recording, a set of qEEG parameters was calcu-
lated. These qEEG features were based on different computational
approaches, which have been described as potentially capable of
quantifying changes in spectral characteristics of the EEG. In addi-
tion to the qEEG features describing EEG reactivity, parameters
detecting EMG reactivity were implemented.

The quantitative analysis of EEG reactivity involved comparison
of the EEG characteristics before and after administration of exter-
nal stimulation. The pre-stimulation epoch that was selected as
baseline included the EEG segment of 60 s prior to the documented
time of the onset of reactivity testing. The subsequent 60 s seg-
ment starting at the onset of stimulation was selected as the
post-stimulation epoch. The duration of the epochs was chosen
to allow the detection of any EEG changes during the total period
of stimulation, which may last up to 30 s, and the detection of
delayed responses, which in our experience can occur several sec-
onds after the stimulus. Quantitative analysis was performed for all
derivations of a bipolar longitudinal montage.

EEG recordings were first exported in standard European Data
Format (.edf), and then imported into the Matlab (Natick, MA)
activity in comatose patients. Clin Neurophysiol (2015), http://dx.doi.org/
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computing environment for further analysis. Independent compo-
nent analysis (ICA), as implemented by the FastICA tool version 2.5
for Matlab (Gävert et al., 2005) was used to identify and eliminate
the component with the highest correlation with the electrocardio-
gram (ECG). Furthermore, components with high kurtosis were
removed in order to minimize artifacts (Delorme et al., 2001) using
a threshold of 15, which was established through observation of
the data. Components were manually checked to prevent elimina-
tion of EEG signal. After detection of EMG reactivity (see below), a
4th order zero-phase high pass Butterworth filter with a cut-off
frequency of 0.5 Hz was used to reduce baseline instability.

The power spectrum of the EEG segments was estimated with
the Thomson’s multi-taper method (Thomson, 1982) implemented
in the Chronux toolbox (Bokil et al., 2007, 2010), which generates
spectral estimates with an optimal balance between spectral reso-
lution (bias) and variance. The frequency resolution, i.e. the inter-
vals between spectral components, was 0.39 and 0.5 Hz, depending
on the sampling rate. In all cases the spectral estimation was based
on 3 slepian tapers, a moving window length of 1.5 s and a step
length of 0.1 s, resulting in a spectral resolution bandwidth, i.e.
the minimal proximity in which two spectral peaks are clearly dis-
tinguishable, of 2.67 Hz, independent of sampling rate. Analysis of
EEG spectral characteristics was confined to 1–18 Hz, to mitigate
the contamination by the electromyography (EMG) activity.
Within this total frequency band (1–18 Hz or 1.2–18.4 Hz, depend-
ing on frequency resolution), we specified the delta (d; 1–4 Hz or
1.2–4.3 Hz), theta (h; 4–8 Hz or 4.3–8.2 Hz), alpha-band (a; 8–
12 Hz or 8.2–12.1 Hz) and beta-band (b: 16–18 Hz or 16–18.4 Hz).

EMG activity of scalp muscles, when present, influences spectral
characteristics of the EEG (Goncharova et al., 2003). This is poten-
tially problematic, as the neurologic prognostic significance of EEG
reactivity in comatose patients is conventionally thought to
depend on measuring the potential of cortical activity to react to
stimulation, whereas EMG activity may arise from extra-cortical
activity. Elimination of EMG artifacts remains a challenge, despite
the use of artifact reduction methods. As a result, EMG reactivity
on stimulation might influence qEEG features, with the potential
to produce false positive assessments of reactivity.

In the present study, the ratio of mean power in the 20–35 Hz
and 1–4 Hz frequency bands (muscle activity ratio) and the ratio
in mean 20–35 Hz power before and after stimulation (muscle
reactivity ratio), were used to detect EMG reactivity of a certain
quantity, as described in more detail in the Supplementary
Material. Cases in which EMG reactivity was detected were
excluded from analysis.
2.4. Temporal brain symmetry index

In order to quantify temporal changes in spectral characteristics
of EEG, the temporal brain symmetry index (tBSI) was proposed in
a recent study (van Putten, 2006). The tBSI is defined as the nor-
malized difference between spectral estimates of two EEG epochs
and thus provides a measure of temporal invariance or symmetry.
In the current study, the tBSI is calculated to assess the difference
between the pre-stimulation epoch and post-stimulation within an
individual derivation:

tBSI ¼ 1
N

XN

i¼1

Xj¼qþk

j¼q

Sposti;j � Sprei;j

Sposti;j þ Sprei;j

�����
�����

�����
����� ð1Þ

Here, Sposti,j and Sprei,j are the spectrogram of the post- and pre-
stimulation epochs with i = 1,2,.... N time samples and j = q,..q + K
frequency components starting at frequency q. The tBSI was sepa-
rately calculated for the previously described d, h, a and b-bands
and the total frequency band.
Please cite this article in press as: Hermans MC et al. Quantification of EEG re
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2.5. Two-group test

The two-group test (Bokil et al., 2007) is a method for compar-
ing the power spectra of two time series. In this method, a
Z-statistic for the differences between each frequency component
of the two time series is calculated, and a p-value is calculated
using the jackknife method to test the null hypothesis that the
spectral components are identical (Bokil et al., 2007; Miller, 1968).

We used the implementation of this method in the function
two_group_test_spectrum from the Chronux toolbox (Arvesen,
1969; Bokil et al., 2010) to obtain p-values for all the individual fre-
quencies between 1 and 18 Hz. The mean p-value of all frequency
components within a specific frequency band was used as reactiv-
ity scoring index, which we call hereafter the TGT:

TGT ¼ 1
K

Xj¼qþk

j¼q

Pj
with Pj is the p-value corresponding to a specific frequency
component and j = q,...,q + K are the frequency components within
a particular frequency band. The TGT was calculated for frequency
bands identical to the bands used in the tBSI, including the d, h, a
and b-bands and the total frequency band.
2.6. Relative entropy

Spectral entropy is a widely used feature to quantify the degree
of regularity or organization in a signal, which is based on quantifi-
cation of the uniformity of power in the power spectrum of a sig-
nal. The relative entropy (RE), or Kullback–Leibler divergence,
compares the spread of power in the frequency spectra of two sig-
nals, thereby quantifying the change in signal organization
(Kullbback and Leibler, 1951).

It has been suggested that RE based methods might be useful in
various settings of EEG analysis, including the assessment of event
related potentials (Rosso et al., 2001) and the detection of epileptic
seizures (Quiroga et al., 2000). In the current study, the spectral RE
is used to assess the similarity in degree of order between the pre-
and post-stimulation EEG segment:
RE ¼ �
XK

j

S0postj � log
S0postj

S0prej

 !
ð2Þ

In which S0postj and S0postj are respectively the 1-18 Hz mean
normalized spectra of the 60 s post- stimulation and pre- stimula-
tion epochs with j = 1,2...,K frequency components.
2.7. Kolmogorov–Smirnov test

The Kolmogorov–Smirnov (KS) test assesses the difference in
the distribution of a variable in two populations (Lilliefors, 1967;
Massey, 1951). It has been suggested that the KS-test might be
used to test the equality of the spectral distribution of two EEG
samples, which can be used to verify the stationarity of the EEG
(McEwen and Anderson, 1975). In the present study, a
two-sample KS-test was used to test the null hypothesis that the
distribution of the mean pre-stimulation spectrum is equal to the
distribution of the mean post-stimulation spectrum. To obtain
these mean spectra, the 1–18 Hz spectrogram corresponding to
the pre-and post-stimulation segments is averaged over the time.
The p-value of KS-test is used as quantitative score of EEG
reactivity.
activity in comatose patients. Clin Neurophysiol (2015), http://dx.doi.org/
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2.8. Peak comparison method

In a recent study, a method that automatically analyzes EEG
reactivity in comatose patients was presented (Noirhomme et al.,
2014). The method is based on the detection of changes in peaks
in the spectra of multiple channels, and we will hereafter refer to
this method as the Peak comparison method (PCM). The detection
involves a comparison of spectral power of 1 s EEG segments
immediately before and after stimulation, performed in multiple
channels. Noirhomme et al. reported that this automated method
provided substantial agreement with visual reactivity scoring,
and a fairly high correlation between automated reactivity scoring
and the patient outcome was found.

In the current study, a variation of the PCM is tested for its capa-
bility of detecting reactivity. In this variation, we used the prepro-
cessed data of the longitudinal bipolar montage instead of a
referential montage and limited the frequency domain to
1–18 Hz instead of >1 Hz. The computational design and all other
settings were similar to the originally described approach. Details
can be found in the Supplementary Material.

2.9. Statistical analysis

The ability of each qEEG feature to discriminate reactive and
non-reactive EEGs was assessed using receiver operating charac-
teristic (ROC) curves, calculated with 500 iterations of repeated
random subsampling cross-validation (Hastie et al., 2009). The
gold standard label (reactive vs. non-reactive) of each case was
determined by classification according to the majority of experts,
and only reactive and non-reactive cases were included in the
assessment of accuracy; cases determined to exhibit ‘unclear reac-
tivity’ were excluded.

Cross-validation was performed for all individual qEEG features
(TBSI and BSI in the d, h, a, b and total frequency band, RE, KS-test
and PCM), but also for several combinations of qEEG features.
Feature combinations (FC) that were tested involved either 2–4
of the best performing individual features or 2 to 4 individual fea-
tures together covering the 1–18 Hz frequency range.

In each iteration of cross-validation, classifier training was con-
ducted on a randomly selected subset of N = 10 cases (training
data), as sketched in Fig. 1. The classifiers were tested on the 10
remaining cases (test data) to avoid over-estimating performance
due to over fitting to idiosyncrasies in the training data (Zhang,
1993).

In training classifiers, the feature values and labels of the train-
ing data were used to generate ROC-curves for every individual
feature-channel combination. Classification consisted in compar-
ing the feature value in that channel to a threshold. For every fea-
ture involved, the channel with the highest area under the curve
was selected as the optimal channel, after which a reactivity prob-
ability model based on the feature values in these corresponding
channels was defined. Hence, classifier training of individual fea-
tures resulted in univariate model estimating the probability of
reactivity using the feature value obtained in the optimal channel.
Likewise, classifier training of feature combinations resulted in
multivariate models involving multiple features each calculated
in one channel (feature-channel set). With this approach, changes
of activity in the different frequency bands – which typically have
their own spatial distribution in the brain (Young, 2000) – were
evaluated in the single channel in which the corresponding feature
was most distinctive.

In testing classifiers, i.e. testing the probability model, an ROC
for classification of the left-out testing data was obtained, involv-
ing classification of testing data according to the modeled reactiv-
ity probability values. The area under this curve (AUC) is reported
as a measure of classifier performance. Classifier specificity and
Please cite this article in press as: Hermans MC et al. Quantification of EEG re
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sensitivity were calculated by setting the classifier threshold to
the value that achieved maximum classification accuracy.

A final reactivity probability model was obtained using the best
performing feature or feature combination identified in the cross
validation analysis, in which the optimal channel(s) and corre-
sponding probability model were calculated using all reactive
and non-reactive cases. Hence, no randomization was performed.
With this final model, the probability of reactivity was calculated
for each case, and the distribution of these probability values in
the different case categories was evaluated. To verify to what
extent the final probability model is calibrated to the opinions of
individual raters, the agreement between the expert scores and
the scores determined by the model was assessed for a range of
classification thresholds. As a reference, the inter rater agreement
among three experts was evaluated. Agreement was evaluated
using percent agreement and Gwet’s kappa value AC1 (Gwet,
2008).
3. Results

3.1. Cases

A total of 70 EEG recordings were collected. A burst suppression
pattern was observed in 2 cases and EMG reactivity was detected
in 8 cases, which were all excluded from analysis. One case was
excluded due to prominent non-physiological artifacts.

Of the 59 included cases, 18 cases were categorized as reactive
and 34 as non-reactive, according to the majority of expert opin-
ions. In 9 reactive cases and 24 non-reactive cases, all experts
agreed on the presence of absence of reactivity, while in the other
9 reactive and 10 non-reactive cases only two out of three experts
agreed. A total of 7 cases were categorized as unclear, either due to
total disagreement between experts or to multiple experts classify-
ing the case as unclear. In total, the experts did not fully agree in
44% of the cases (26 out of 59). The inter-rater agreement for the
included cases was 66%, and the corresponding Gwet’s AC1 was
53%, indicating moderate overall agreement.

3.2. qEEG

3.2.1. Optimal channels
A complete summary of the AUC values of the qEEG features

found in each individual is included the Supplementary Material
(Supplementary Figure S1 and S2). The AUC values differed
between channels. In addition, the channel in which the AUC
was maximal varied between different qEEG features, and was
dependent on the set of cases that was randomly selected as train-
ing data in the cross validation procedure. In general, features
based on the d-band showed a better performance in the frontal
derivations, while performance was most optimal in parietal
region for the h-band, in the posterior temporal area for the
a-band and in the occipital derivations for the b-band. For most
features, AUC values were higher on the left hemisphere than on
the right.

3.2.2. qEEG features
The cross validated median AUC values and corresponding

interquartile range (IQR) of the individual qEEG features are sum-
marized in Table 1. Among all single qEEG features evaluated,
those based on the tBSI showed the highest median AUC values,
with tBSI calculations over the total band showing the best overall
performance, followed by tBSIh, tBSIb and tBSId and tBSIa, respec-
tively. Features based on the TGT were as a group better than fea-
tures based on RE, the KS-test, and PCM. Table 1 shows a selection
of multivariate probability models involving feature combinations,
activity in comatose patients. Clin Neurophysiol (2015), http://dx.doi.org/
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Fig. 1. Schematic overview of the cross-validation iteration, which is performed 500 times for purposes of classifier training and testing. Abbreviations: ROC, receiver
operating characteristics; AUC, area under curve; qEEG, quantitative EEG.

Table 1
Accuracy of tested quantitative EEG features.

Feature Median AUC (IQR)

tBSI total 0.94 (0.83–1.00)
tBSI d 0.88 (0.76–0.96)
tBSI h 0.92 (0.83–1.00)
tBSI a 0.88 (0.76–0.96)
tBSI b 0.89 (0.79–1.00)
TGT total 0.89 (0.79–1.00)
TGT d 0.86 (0.75–0.95)
TGT h 0.83 (0.72–0.92)
TGT a 0.83 (0.69–0.94)
TGT b 0.88 (0.80–0.94)
RE 0.79 (0.67–0.90)
KS-test 0.78 (0.65–0.88)
PCM 0.54 (0.53–0.56)
FC1 (tBSI total + TGT total) 0.94 (0.84–1.00)
FC2 (tBSI total + TGT total + RE + KS-test) 0.92 (0.83–1.00)
FC3 (tBSI d + tBSI h + tBSI a + tBSI b) 0.95 (0.86–1.00)
FC4 (TGT d + TGT h + TGT a + TGT b) 0.91 (0.81–1.00)
FC5 (tBSI d + tBSI h + tBSI a + tBSI b + TGT d +

TGT h + TGT a + TGT b)
0.92 (0.81–1.00)

Abbreviations: FC, feature combination; tBSI, temporal brain symmetry index; TGT,
two-group test; RE, relative entropy; KS-test, Kolmogorov–Smirnov test; PCM, peak
comparison method; AUC, area under the curve; IQR, interquartile range.
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with their AUC values obtained from the cross-validation process.
No other multivariate models that were developed provided higher
AUC values than the FC3 model.

3.2.3. Optimal qEEG model
Of the univariate models, the model based on the tBSI total fea-

tures performed best, with a median AUC of 0.94 (IQR: 0.83–1.00
and 1–99% percentile range: 0.43-1.00). Overall, the probability
model performing best as a classifier of reactivity was based on
feature combination FC3 (combining individual tBSI values from
the in the d-, h-, a- and b-bands). The median AUC of the
FC3-based probability models found in the in 500-fold repeated
random subset cross-validation, in which models were trained on
a randomized set of 10 cases and tested on the left-out cases,
Please cite this article in press as: Hermans MC et al. Quantification of EEG re
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was 0.95 (IQR 0.86–1.00 and 1–99% percentile range: 0.50–1.00).
The ROC curve and corresponding classifier thresholds of the 500
fold iterations is show in Fig. 2A. In these FC3-models, the predic-
tion of presence of reactivity was associated with a specificity of
86% (IQR: 67–100%) at 100% sensitivity and a sensitivity of 80%
(IQR: 50–100%) at 87% specificity.

The FC3-based model that was estimated and tested using all
cases classified as reactive or non-reactive by experts (final model)
selected the F3-C3, C3-P3, P7-O1 and P3-O1 derivations as the opti-
mal channels to obtain tBSI features of the d, h, a and b frequency
bands, respectively, according to the AUC values of the individual
features. Hence, the FC3 probability model included tBSI d calcu-
lated in the F3-C3, tBSI h in C3-P3, tBSI a in P7-O1 and tBSI b in
P3-O1. This final model was associated with an AUC of 0.95, as cal-
culated using all included reactive and non-reactive cases.

The distribution among different case categories and the prob-
ability function corresponding to the final model are summarized
in Fig. 2B and C. The probability values – i.e. predicted probability
of reactivity – of the reactive cases were higher than those of the
non-reactive cases. In addition, the median probability of reactivity
was higher in reactive cases for which inter-expert agreement was
3/3than in cases scores as reactive by 2/3 of the raters. The oppo-
site was seen for non-reactive cases; the predicted probability of
reactivity was lower for the group classified as non-reactive by
all experts compared to those in which 2/3 raters classified the
case as non-reactive. For cases in which reactivity was assessed
as unclear by the experts, probability values varied between 0.02
and 1.00, but showed a median value of 0.50. In the 34 epochs of
unstimulated comatose patients, the model yielded a probability
values of 0–0.055, indicating lack of spontaneous reactivity.

Fig. 2D shows the agreement between the individual expert and
the final FC3 probability model used as a classifier involving a
specific probability threshold, i.e. a threshold that determines from
which probability value a case is considered reactive. The maximal
agreement was found at a probability threshold of 0.65, accompa-
nied by a Gwet’s AC1 of 65% for expert 1, and 70% and 66% for
experts 2 and 3 respectively. Using this threshold, classification
by the FC3 model was in agreement with the expert’s opinion in
activity in comatose patients. Clin Neurophysiol (2015), http://dx.doi.org/
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Fig. 2. (A) Receiver operating characteristic (ROC) curves corresponding to the probability function obtained the 500-fold cross-validation. The blue line reflects the median
sensitivity of the 500 iterations, with its area reflecting the interquartile (IQR) range. The green line and area reflect the corresponding median probability threshold and IQR
range used for classification. (B) Distribution of probabilities based on the FC3 model in corresponding to case categories. Cases were categorized according to the major
expert score (R = Reactive, NR = Non-reactive, U = unclear) and the amount of experts that agreed on this score (3/3, 2/3 or 0/3). (C) Reactivity probability curve of final FC3
model. k reflects exponential function of the selected set of qEEG features, involved in the probability function P = 1/1 + k. Green stars and red circle reflect the cases scored as
reactive and non-reactive respectively. (D) Agreement between categorization by the majority of experts’ impressions and classifiers of the FC3 probability model involving a
specific threshold.
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50 out of 52 cases labeled as reactive or non-reactive. These results
indicate that the FC3 final model was in substantial agreement
with the individual opinion of all experts.

In Fig. 3A–D, the pre- and post-stimulation EEG recording and
corresponding spectrogram of four different case examples are
shown to illustrate the findings. The EEG recording of case pre-
sented in Fig. 3A was labeled as reactive by the experts, and was
accompanied by a high probability of reactivity (close to 1) accord-
ing to the FC3 model. Likewise, a case scored as non-reactive by
experts (Fig. 3B) was accompanied by low probability values (close
to 0). Hence, in both cases the probability model was in line with
the opinion of experts, which was the case for all 50 cases labeled
as reactive or non-reactive.

The reactivity probability values calculated by the FC3 model
were in disagreement with the experts in two cases, of which
one is presented in Fig. 3C. These cases were accompanied by a
low probability of reactivity (<0.50), while the experts classified
these cases as reactive. Strikingly, in both ‘misclassified’ cases, no
clear spectral changes were observed in the spectrogram, support-
ing the estimated probability values.

Fig. 3D shows an example of a case in the unclear category,
which was accompanied by an intermediate (close to 0.5) probabil-
ity of reactivity.

4. Discussion

We have developed an algorithm to automatically assess EEG
reactivity using several qEEG features. The algorithm relies on a
Please cite this article in press as: Hermans MC et al. Quantification of EEG re
10.1016/j.clinph.2015.06.024
probability model involving single or multiple features quantifying
the spectral changes between a pre- and a post-stimulation epoch
(spectral symmetry) and was tested against the consensus opinion
of three expert EEG readers. The probability model showing best
performance in the classification of reactivity was based on tBSI
features in separate frequency bands and agreed with visual anal-
ysis by experts at least as well as experts agreed amongst
themselves.

In the exploration of the performance of qEEG features as clas-
sifiers of reactivity, we found that the AUC values obtained from
the ROC curves varied between the different features, indicating
that some quantitative approaches reflect expert judgment regard-
ing EEG reactivity better than others.

In general, among the univariate models, those based on tBSI
emerged as the best classifiers of reactivity, showing median AUC
values of 0.88-0.94, closely followed by TGT related features show-
ing median AUC values of 0.83-0.89. Both methods compare the
pre- and post-stimulation spectrum for all frequency components
individually, and the high AUC values indicate that this approach
might be efficient in characterizing EEG reactivity.

Classifier models based on the KS-test and RE related features
achieved moderate median AUC values of 0.78 and 0.79 respec-
tively. By design, both parameters are sensitive to alterations in
the relative spectral distribution, but insensitive to changes in total
power with a constant relative spectrogram, which might explain
misclassification of several cases.

Classifiers based on the PCM method achieved low sensitivity
and specificity and a median AUC of 0.54. During visual evaluation
activity in comatose patients. Clin Neurophysiol (2015), http://dx.doi.org/
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Fig. 3. Examples of EEG recording and corresponding probability of reactivity of cases with different expert labels: (A) Reactive case with corresponding high probability
value. (B) Non-reactive case with corresponding low probability values. (C) Reactive case with a discrepant low probability value (misclassification) (D) Unclear case with
median probability value. Top frames reflect the spectrogram of the pre- and post-stimulation epoch in Cz-Pz, showing the power (dB) of the frequency components (Freq) in
time. Onset of stimulation is at 60s, as indicated by the double vertical lines in the spectrum. Lower curves display the Cz-Pz recording in time, where the blue line (0–60 s)
reflects the pre-stimulation epoch and the red line the post-stimulation epoch (60–120 s). In the side panel, the probability calculated using the FC3 final model is shown. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of the case spectra, it was seen that changes in the frequency or
amplitude did not always start immediately after the onset of stim-
ulation and that EEG reactivity was often not homogeneous
throughout the total post-stimulation period. This might explain
the low AUC values for classifiers based on the PCM method, as this
approach uses only very short epochs, leading to a higher suscep-
tibility to errors due to irregularities in the EEG and to delay in EEG
reactivity.

The channels in which a maximal AUC was found most fre-
quently varied between features based on either the d, h, a or b
band. This suggests that the reactivity in individual frequency
bands is more visible in specific locations of the brain than others.
In general, models with good classification performance involved
assessment of spectral changes in the frontal channels for the
d-band, in parietal channels for h-band, in the posterior temporal
area for the a-band and in the occipital region for the b-band.
Strikingly, reactive and non-reactive cases could generally be dis-
tinguished better using EEG derivations situated on the left hemi-
sphere. Although this is an intriguing finding, the differences in
AUC between left and right derivations were relatively small and
were not seen in all pairs of channels. Therefore, this asymmetry
should be taken with caution and requires confirmation.

In general, qEEG models in which all frequency bands are
involved showed higher AUC values compared to those involving
Please cite this article in press as: Hermans MC et al. Quantification of EEG re
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one, two or three individual bands. This is not surprising since
coma can be associated with a variety of EEG patterns involving
activity in different frequency bands, depending on its cause
(Sutter and Kaplan, 2012; Synek, 1990). The tBSI total model, in
which all frequency components of the total frequency range con-
tribute equally, was the best performing univariate model. Yet, the
multivariate models FC1 and FC3 performed slightly better accord-
ing to the AUC values, i.e. median, IQR and 1–99% percentile range,
suggesting that it is beneficial to combine information across the d,
h, a and b-bands in a specific ratio.

The probability functions based on the presented combination
of qEEG features (FC3) showed best performance (median AUC
value and IQR) and was accompanied with a specificity of 88%
for 100% sensitivity. As shown in the illustrative examples of
Fig. 3A and B, cases without obvious changes in the spectrograms
generally result in low probabilities of reactivity estimated by
FC3 while cases with evident spectral changes are assigned high
probabilities. Cases in which the spectral changes are less clear
were accompanied by variable probability values with an interme-
diate median value (close to 0.5), likely indicating that this group
comprises cases showing ‘weak’ reactivity (Fig. 3D). Furthermore,
the substantial agreement between the assessment by individual
experts and the classification based on the FC3 probability model
(Fig. 2D) indicates that the model agrees at least as well with the
activity in comatose patients. Clin Neurophysiol (2015), http://dx.doi.org/
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individual experts as the experts agree amongst themselves and
shows that the performance of the classifier was not biased by
one or two specific reviewers.

Despite the promising AUC values and concordance with the
experts’ opinion, the probability functions of both individual fea-
tures and combinations are still accompanied by imperfect speci-
ficity relative to overall expert consensus. According to the FC3
final model, two cases were classified as reactive by the experts
but were accompanied by a discrepant low probability value
(<0.50) indicating absence of reactivity. However, in retrospect
evaluation of these cases, the experts did not notice evident spec-
tral changes in the spectrograms (Fig. 3C). This makes it less likely
that the final model provided false classification, and suggests that
the EEG readers misclassified these cases.

The quantitative methods developed herein were evaluated for
their performance as binary classifiers (reactive vs. non-reactive),
which matches the current approach in which ‘any’ change in the
EEG is regarded as reactive. Our results however indicate that reac-
tivity is in fact not a binary phenomenon. Indeed, cases where
there was a full agreement (3/3) between EEG readers showed
more extreme probability of reactivity (i.e. values close to 1 for
reactivity or 0 for non-reactivity) than cases where agreement
was only partial (2/3) (Fig. 2B). Similarly, unclear cases (that were
not used for training the classifier) were characterized by a wide
range of probability values intermediate between cases classified
as reactive or unreactive. This indicates that degrees of reactivity
can be seen and interpreted variably by EEG readers. In practice,
presence or absence of reactivity does not appear obvious in a sig-
nificant minority of cases, as reflected by the substantial number of
unclear cases in this study population and by the significant dis-
agreement between experts. This inter-rater variability deserves
to be investigated if reactivity testing is to become a reliable prog-
nostic tool and motivated this work. It is likely that intermediary
cases will benefit from quantification methods that provide an
objective measure of reactivity, rather than depends on subjective
assessment. To facilitate quantification adapted to the gradual
character of reactivity, a non-binary measure or ‘reactivity scale’
would be most appropriate.

Altogether, our findings indicate that the quantitative method
developed herein provides a proper representation of the expert
opinion regarding reactivity, which seems efficient in distinguish-
ing reactive cases from non-reactive cases. In addition, the numer-
ical reactivity probability values might provide a more refined
approach or ‘scale of reactivity’ that might quantity the degree of
reactivity as a continuous rather than dichotomous variable.

Although the automated method performed at least as well as
visual analysis, which has its own restraints and inaccuracies, the
proposed quantitative methods might be accompanied by several
limitations when used for prediction of clinical outcome.

First, given the potentially major implication of absence of reac-
tivity, it is desirable that even the smallest or most subtle amount
of EEG reactivity is detected. Therefore, the sensitivity of a quanti-
tative parameter for the prediction of the presence of reactivity is
critical. Further studies should investigate in greater detail the
time course of EEG changes following stimulation and the optimal
length of the pre- and post-stimulation epochs for visual and quan-
titative analysis. Second, non-stationarity of the background
rhythm might distort the quantitative assessment, even though
the use of 60 s epochs probably averages out most of the back-
ground variations and the results of the non-stimulated cases indi-
cate low sensitivity for this phenomenon. In the setting of
prognostication, evaluation of the background rhythm might be
warranted to optimize the settings of the quantitative assessment
of reactivity. Third, the presented models involve features that are
based on one single pre-defined channel. Yet, it is plausible the var-
ious types of stimuli arouse different reactivity patterns in
Please cite this article in press as: Hermans MC et al. Quantification of EEG re
10.1016/j.clinph.2015.06.024
divergent brain areas or that functionality of the brain is inhomo-
geneous due to partial injury. With the presented quantitative
approach, it is possible that reactive patterns that are merely pre-
sent in brain areas distant from the selected channels are missed
by the model which may lead to unjust quantification. Therefore,
it needs to be explored whether use of multiple channels in differ-
ent areas or separate models for different stimuli types increases
sensitivity even more, without affecting specificity. Last, the calcu-
lated models give more importance to specific frequency domains
than others, in which definition of the boundaries of these fre-
quency bands is imperative. In the current analysis, the frequency
range was limited to 1–18 Hz, and the b range that is mostly
defined as 14–30 Hz was truncated to minimize effects of EMG
activity. Whether this design has clinical implications has to be
demonstrated, and further exploration of the most optimal fre-
quency components with most clinical value is warranted.

Another issue that should be taken into account is that the
currently proposed method may be inefficient in case artifacts, in
particular EMG, are present in the EEG. To prevent erroneous quan-
tification of EEG reactivity, development of methods reducing the
influence of artifacts, burst suppression or EMG reactivity is desir-
able. It might also be beneficial to switch to different quantitative
approaches in case burst-suppression is detected. In case of
burst-suppression, one might calculate the qEEG features using
the non-suppressed periods only. An additional parameter assess-
ing changes in length or frequency of burst and inter-burst inter-
vals could also be implemented.

Although we validated our algorithm using 500 iterations of
cross-validation, further studies are required to demonstrate the
generalizability of these findings from a small sample to a larger
independent set of cases. Another limitation of the present study
is that agreement between experts scores based on the total EEG
expert recording was only moderate, which is in line with the
observation that experts do not always agree on the interpretation
of EEG findings(Gerber et al., 2008; Mani et al., 2012). This finding
questions the validity of using expert scoring as a gold standard. To
strengthen the reliability of expert scores as gold standard in fur-
ther research, one could consider increasing the number of raters.
In addition, utilization of a carefully defined guideline seems to
improve agreement between raters in the assessment of various
EEG characteristics (Gaspard et al., 2014). Thus it is highly recom-
mended to define a uniform standard for the assessment of EEG
reactivity. Furthermore, it is suggested to involve alternative
domains to present the EEG, i.e. as a time-frequency or temporal
symmetry representation, as this might support visualization of
the EEG characteristics and contribute to an objective interpreta-
tion (van Putten, 2008). The finding that the inter-rater agreement
is far from optimal underlines the subjectivity of visual analysis
and stresses the importance of the development of objective quan-
titative methods as aimed in this present study.

Ultimately, the most important aspect of qEEG features is how
well they can predict neurological outcomes of patients, regardless
of how well they correlate with the opinion of experts. Therefore,
future studies comparing qEEG findings and clinical outcome are
desirable.

Yet, there is currently no standardized protocol for the assess-
ment of EEG reactivity. The temporal, spatial and morphological
characteristics of the EEG arousal response are not known to be
influenced by the method of stimulation (Fischgold et al., 1959).
It remains to be demonstrated if different arousal patterns have
different prognostic implications and only limited prognostic
information might be obtained in cases of hypothermia and seda-
tion. These factors should be investigated in subsequent studies,
after which development of a proper testing protocol is war-
ranted to enable proper evaluation of the result of the EEG
reactivity test.
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In addition in the interpretation of EEG reactivity test, it needs
to be considered that a single assessment of EEG reactivity may
underestimate the reactive capability of the brain, as intermittent
reactivity may occur. Accordingly, absence of a change in the EEG
after stimulation does not always imply a bad prognosis, i.e. when
this is accompanied by a favorable background pattern represent-
ing an ‘active’ or ‘already stimulated’ cerebral state prior to reactiv-
ity testing. Likewise, not all changes in the EEG are inherently
prognostically favorable, e.g. SIRPIDs or the induction of bursts
(Alvarez et al., 2013). It should be noted that burst-suppression,
and especially burst-suppression with identical bursts in posta-
noxic coma, is strongly associated with poor outcome (Hofmeijer
et al., 2014; Young, 2000; Zandbergen et al., 1998), suggesting that
EEG reactivity testing might be superfluous when such a pattern is
observed. To ensure correct interpretation of the (quantitative)
results of the reactivity test, visual verification of the underlying
rhythm during reactivity testing is essential. Besides, it is impera-
tive to obtain multiple epochs per patient to ensure that the out-
come is reproducible.

Furthermore, for purposes of prognostication, the outcome of the
EEG reactivity test should be interpreted in the light of other test
results and findings such as clinical examination, EEG background
rhythm, and somatosensory evoked potentials (Oddo and Rossetti,
2014; Rossetti et al., 2010; Tjepkema-Cloostermans et al., 2015;
Wijdicks et al., 2006), which all have some predictive value. In this,
it is relevant to make a distinction between patients with traumatic
brain injury and postanoxic encephalopathy, as the mechanisms
involved in cerebral damage and prognoses are quite different.

5. Conclusion

We have shown that EEG features quantifying spectral changes
can detect EEG reactivity. Binary classifiers based on these features
agreed with the visual assessment of reactivity by experts at least
as well as experts agreed among themselves. In addition, the
numerical measures provided by the probability model might pro-
vide a more refined representation or scale of the quantity of reac-
tivity. Although further validation is needed, these results suggest
that quantitative EEG is a useful tool to support visual analysis,
potentially improving the objectivity of the EEG reactivity test
and assisting in the prediction of clinical outcome in comatose
patients.
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