10 research outputs found

    Method of increasing the information capacity of associative memory of oscillator neural networks using high-order synchronization effect

    Full text link
    Computational modelling of two- and three-oscillator schemes with thermally coupled VO2VO_2-switches is used to demonstrate a novel method of pattern storage and recognition in an impulse oscillator neural network (ONN) based on the high-order synchronization effect. The method ensures high information capacity of associative memory, i.e. a large number of synchronous states NsN_s. Each state in the system is characterized by the synchronization order determined as the ratio of harmonics number at the common synchronization frequency. The modelling demonstrates attainment of NsN_s of several orders both for a three-oscillator scheme NsN_s~650 and for a two-oscillator scheme NsN_s~260. A number of regularities are obtained, in particular, an optimal strength of oscillator coupling is revealed when NsN_s has a maximum. A general tendency toward information capacity decrease is shown when the coupling strength and switch inner noise amplitude increase. An algorithm of pattern storage and test vector recognition is suggested. It is also shown that the coordinate number in each vector should be one less than the switch number to reduce recognition ambiguity. The demonstrated method of associative memory realization is a general one and it may be applied in ONNs with various mechanisms and oscillator coupling topology.Comment: 18 pages, 8 figure

    A Bio-Inspired Chaos Sensor Based on the Perceptron Neural Network: Concept and Application for Computational Neuro-science

    Full text link
    The study presents a bio-inspired chaos sensor based on the perceptron neural network. After training, the sensor on perceptron, having 50 neurons in the hidden layer and 1 neuron at the output, approximates the fuzzy entropy of short time series with high accuracy with a determination coefficient R2 ~ 0.9. The Hindmarsh-Rose spike model was used to generate time series of spike intervals, and datasets for training and testing the perceptron. The selection of the hyperparameters of the perceptron model and the estimation of the sensor accuracy were performed using the K-block cross-validation method. Even for a hidden layer with 1 neuron, the model approximates the fuzzy entropy with good results and the metric R2 ~ 0.5-0.8. In a simplified model with 1 neuron and equal weights in the first layer, the principle of approximation is based on the linear transformation of the average value of the time series into the entropy value. The bio-inspired chaos sensor model based on an ensemble of neurons is able to dynamically track the chaotic behavior of a spiked biosystem and transmit this information to other parts of the bio-system for further processing. The study will be useful for specialists in the field of computational neuroscience.Comment: 12 pages, 22 figures, 4 table
    corecore