41 research outputs found

    PhagePhisher: a Pipeline for the Discovery of Covert Viral Sequences in Complex Genomic Datasets

    Get PDF
    Obtaining meaningful viral information from large sequencing datasets presents unique challenges distinct from prokaryotic and eukaryotic sequencing efforts. The difficulties surrounding this issue can be ascribed in part to the genomic plasticity of viruses themselves as well as the scarcity of existing information in genomic databases. The open-source software PhagePhisher (http://www.putonti-lab.com/phagephisher) has been designed as a simple pipeline to extract relevant information from complex and mixed datasets, and will improve the examination of bacteriophages, viruses, and virally related sequences, in a range of environments. Key aspects of the software include speed and ease of use; PhagePhisher can be used with limited operator knowledge of bioinformatics on a standard workstation. As a proof-of-concept, PhagePhisher was successfully implemented with bacteria–virus mixed samples of varying complexity. Furthermore, viral signals within microbial metagenomic datasets were easily and quickly identified by PhagePhisher, including those from prophages as well as lysogenic phages, an important and often neglected aspect of examining phage populations in the environment. PhagePhisher resolves viral-related sequences which may be obscured by or imbedded in bacterial genomes

    Draft Genome Sequence of Escherichia coli K-12 (ATCC 29425)

    Get PDF
    A draft genome sequence for Escherichia coli ATCC 29425 was investigated. The size of the genome was 4,608,319 bp, with an observed G+C content of 50.68%. This assembly consisted of 80 contigs, with an average coverage of 122.2×, including one contig representative of the complete genome for the temperate phage P1

    Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798)

    Get PDF
    Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E. coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496 bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid

    Seven Bacteriophages Isolated from the Female Urinary Microbiota

    Get PDF
    Recent research has debunked the myth that urine is sterile, having uncovered bacteria within the bladders of healthy individuals. However, the identity, diversity, and putative roles of bacteriophages in the bladder are unknown. We report the draft genome sequences of seven bacteriophages isolated from microbial communities from adult female bladders

    Draft Genome Sequences of Two ATCC Staphylococcus aureus subsp. aureus Strains

    Get PDF
    Draft genome sequences for Staphylococcus aureus subsp. aureus Rosenbach ATCC 14458 and ATCC 27217 strains were investigated. The genome sizes were 2,880,761 bp and 2,759,100 bp, respectively. Strain ATCC 14458 was assembled into 39 contigs, including 3 plasmids, and strain ATCC 27217 was assembled into 25 contigs, including 2 plasmids

    Draft Genome Sequence of Enterococcus faecalis ATCC BAA-2128

    Get PDF
    While a part of the native gut microflora, the Gram-positive bacterium Enterococcus faecalis can lead to serious infections elsewhere in the body. The draft genome of E. faecalis strain ATCC BAA-2128, isolated from piglet feces, was examined. This draft genome consists of 42 contigs, 12 of which exhibit homology to annotated plasmids

    Draft Genome Sequence of Micrococcus luteus (Schroeter) Cohn (ATCC 12698)

    Get PDF
    The actinobacterium Micrococcus luteus can be found in a wide variety of habitats. Here, we report the 2,411,958-bp draft genome sequence of the type strain M. leuteus (Schroeter) Cohn (ATCC 12698). Characteristic of this taxa, the genome sequence has a high G+C content, 73.14%

    The theoretical basis of universal identification systems for bacteria and viruses

    Get PDF
    It is shown that the presence/absence pattern of 1000 random oligomers of length 12� in a bacterial genome is sufficiently characteristic to readily and unambiguously distinguish any known bacterial genome from any other. Even genomes of extremely closely-related organisms, such as strains of the same species, can be thus distinguished. One evident way to implement this approach in a practical assay is with hybridization arrays. It is envisioned that a single universal array can be readily designed that would allow identification of any bacterium that appears in a database of known patterns. We performed in silico experiments to test this idea. Calculations utilizing 105 publicly-available completely-sequenced microbial genomes allowed us to determine appropriate values of the test oligonucleotide length, n, and the number of probe sequences. Randomly chosen n-mers with a constant G + C content were used to form an in silico array and verify (a) how many n-mers from each genome would hybridize on this chip, and (b) how different the fingerprints of different genomes would be. With the appropriate choice of random oligomer length, the same approach can also be used to identify viral or eukaryotic genomes

    Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla

    Get PDF
    BACKGROUND: The study of bacteriophages continues to generate key information about microbial interactions in the environment. Many phenotypic characteristics of bacteriophages cannot be examined by sequencing alone, further highlighting the necessity for isolation and examination of phages from environmental samples. While much of our current knowledge base has been generated by the study of marine phages, freshwater viruses are understudied in comparison. Our group has previously conducted metagenomics-based studies samples collected from Lake Michigan - the data presented in this study relate to four phages that were extracted from the same samples. FINDINGS: Four phages were extracted from Lake Michigan on the same bacterial host, exhibiting similar morphological characteristics as shown under transmission electron microscopy. Growth characteristics of the phages were unique to each isolate. Each phage demonstrated a host-range spanning several phyla of bacteria - to date, such a broad host-range is yet to be reported. Genomic data reveals genomes of a similar size, and close similarities between the Lake Michigan phages and the Pseudomonas phage PB1, however, the majority of annotated genes present were ORFans and little insight was offered into mechanisms for host-range. CONCLUSIONS: The phages isolated from Lake Michigan are capable of infecting several bacterial phyla, and demonstrate varied phenotypic characteristics despite similarities in host preference, and at the genomic level. We propose that such a broad host-range is likely related to the oligotrophic nature of Lake Michigan, and the competitive benefit that this characteristic may lend to phages in nature

    Freshwater Metaviromics and Bacteriophages: A Current Assessment of the State of the Art in Relation to Bioinformatic Challenges

    Get PDF
    Advances in bioinformatics and sequencing technologies have allowed for the analysis of complex microbial communities at an unprecedented rate. While much focus is often placed on the cellular members of these communities, viruses play a pivotal role, particularly bacteria-infecting viruses (bacteriophages); phages mediate global biogeochemical processes and drive microbial evolution through bacterial grazing and horizontal gene transfer. Despite their importance and ubiquity in nature, very little is known about the diversity and structure of viral communities. Though the need for culture-based methods for viral identification has been somewhat circumvented through metagenomic techniques, the analysis of metaviromic data is marred with many unique issues. In this review, we examine the current bioinformatic approaches for metavirome analyses and the inherent challenges facing the field as illustrated by the ongoing efforts in the exploration of freshwater phage populations
    corecore