621 research outputs found
A Mitochondrial Health Index Sensitive to Mood and Caregiving Stress.
BACKGROUND:Chronic life stress, such as the stress of caregiving, can promote pathophysiology, but the underlying cellular mechanisms are not well understood. Chronic stress may induce recalibrations in mitochondria leading to changes either in mitochondrial content per cell, or in mitochondrial functional capacity (i.e., quality). METHODS:Here we present a functional index of mitochondrial health (MHI) for human leukocytes that can distinguish between these two possibilities. The MHI integrates nuclear and mitochondrial DNA-encoded respiratory chain enzymatic activities and mitochondrial DNA copy number. We then use the MHI to test the hypothesis that daily emotional states and caregiving stress influence mitochondrial function by comparing healthy mothers of a child with an autism spectrum disorder (high-stress caregivers, n = 46) with mothers of a neurotypical child (control group, n = 45). RESULTS:The MHI outperformed individual mitochondrial function measures. Elevated positive mood at night was associated with higher MHI, and nightly positive mood was also a mediator of the association between caregiving and MHI. Moreover, MHI was correlated to positive mood on the days preceding, but not following the blood draw, suggesting for the first time in humans that mitochondria may respond to proximate emotional states within days. Correspondingly, the caregiver group, which had higher perceived stress and lower positive and greater negative daily affect, exhibited lower MHI. This effect was not explained by a mismatch between nuclear and mitochondrial genomes. CONCLUSIONS:Daily mood and chronic caregiving stress are associated with mitochondrial functional capacity. Mitochondrial health may represent a nexus between psychological stress and health
More than a feeling: A unified view of stress measurement for population science.
Stress can influence health throughout the lifespan, yet there is little agreement about what types and aspects of stress matter most for human health and disease. This is in part because "stress" is not a monolithic concept but rather, an emergent process that involves interactions between individual and environmental factors, historical and current events, allostatic states, and psychological and physiological reactivity. Many of these processes alone have been labeled as "stress." Stress science would be further advanced if researchers adopted a common conceptual model that incorporates epidemiological, affective, and psychophysiological perspectives, with more precise language for describing stress measures. We articulate an integrative working model, highlighting how stressor exposures across the life course influence habitual responding and stress reactivity, and how health behaviors interact with stress. We offer a Stress Typology articulating timescales for stress measurement - acute, event-based, daily, and chronic - and more precise language for dimensions of stress measurement
Extension of PRISM by Synthesis of Optimal Timeouts in Fixed-Delay CTMC
We present a practically appealing extension of the probabilistic model
checker PRISM rendering it to handle fixed-delay continuous-time Markov chains
(fdCTMCs) with rewards, the equivalent formalism to the deterministic and
stochastic Petri nets (DSPNs). fdCTMCs allow transitions with fixed-delays (or
timeouts) on top of the traditional transitions with exponential rates. Our
extension supports an evaluation of expected reward until reaching a given set
of target states. The main contribution is that, considering the fixed-delays
as parameters, we implemented a synthesis algorithm that computes the
epsilon-optimal values of the fixed-delays minimizing the expected reward. We
provide a performance evaluation of the synthesis on practical examples
Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
Probabilistic Timed Automata with Clock-Dependent Probabilities
Probabilistic timed automata are classical timed automata extended with
discrete probability distributions over edges. We introduce clock-dependent
probabilistic timed automata, a variant of probabilistic timed automata in
which transition probabilities can depend linearly on clock values.
Clock-dependent probabilistic timed automata allow the modelling of a
continuous relationship between time passage and the likelihood of system
events. We show that the problem of deciding whether the maximum probability of
reaching a certain location is above a threshold is undecidable for
clock-dependent probabilistic timed automata. On the other hand, we show that
the maximum and minimum probability of reaching a certain location in
clock-dependent probabilistic timed automata can be approximated using a
region-graph-based approach.Comment: Full version of a paper published at RP 201
Actor-Critic Policy Learning in Cooperative Planning
In this paper, we introduce a method for learning and adapting cooperative control strategies in real-time stochastic domains. Our framework is an instance of the intelligent cooperative control architecture (iCCA)[superscript 1]. The agent starts by following the "safe" plan calculated by the planning module and incrementally adapting its policy to maximize the cumulative rewards. Actor-critic and consensus-based bundle algorithm (CBBA) were employed as the building blocks of the iCCA framework. We demonstrate the performance of our approach by simulating limited fuel unmanned aerial vehicles aiming for stochastic targets. In one experiment where the optimal solution can be calculated, the integrated framework boosted the optimality of the solution by an average of %10, when compared to running each of the modules individually, while keeping the computational load within the requirements for real-time implementation.Boeing Scientific Research LaboratoriesUnited States. Air Force Office of Scientific Research (Grant FA9550-08-1-0086
Optimal Strategies in Infinite-state Stochastic Reachability Games
We consider perfect-information reachability stochastic games for 2 players
on infinite graphs. We identify a subclass of such games, and prove two
interesting properties of it: first, Player Max always has optimal strategies
in games from this subclass, and second, these games are strongly determined.
The subclass is defined by the property that the set of all values can only
have one accumulation point -- 0. Our results nicely mirror recent results for
finitely-branching games, where, on the contrary, Player Min always has optimal
strategies. However, our proof methods are substantially different, because the
roles of the players are not symmetric. We also do not restrict the branching
of the games. Finally, we apply our results in the context of recently studied
One-Counter stochastic games
Probabilistic Model Checking for Energy Analysis in Software Product Lines
In a software product line (SPL), a collection of software products is
defined by their commonalities in terms of features rather than explicitly
specifying all products one-by-one. Several verification techniques were
adapted to establish temporal properties of SPLs. Symbolic and family-based
model checking have been proven to be successful for tackling the combinatorial
blow-up arising when reasoning about several feature combinations. However,
most formal verification approaches for SPLs presented in the literature focus
on the static SPLs, where the features of a product are fixed and cannot be
changed during runtime. This is in contrast to dynamic SPLs, allowing to adapt
feature combinations of a product dynamically after deployment. The main
contribution of the paper is a compositional modeling framework for dynamic
SPLs, which supports probabilistic and nondeterministic choices and allows for
quantitative analysis. We specify the feature changes during runtime within an
automata-based coordination component, enabling to reason over strategies how
to trigger dynamic feature changes for optimizing various quantitative
objectives, e.g., energy or monetary costs and reliability. For our framework
there is a natural and conceptually simple translation into the input language
of the prominent probabilistic model checker PRISM. This facilitates the
application of PRISM's powerful symbolic engine to the operational behavior of
dynamic SPLs and their family-based analysis against various quantitative
queries. We demonstrate feasibility of our approach by a case study issuing an
energy-aware bonding network device.Comment: 14 pages, 11 figure
Recommended from our members
Effects of Aerobic Exercise Training on Daily Psychological Processes in Family Caregivers: Secondary Analyses of a Randomized Controlled Trial
The aim of this study was to examine the effects of a 24-week aerobic exercise training program on daily psychological processes and occurrence of stressors in a group of previously physically underactive family caregivers of patients with dementia. As part of the Fitness, Aging, and STress (FAST) randomized controlled trial, 68 participants (F = 55; M = 13) were randomized to either a staff-supported, 24-week aerobic training (N = 34) program or waitlist control (N = 34) group. Approximately 2 weeks prior to randomization, ecological momentary assessments were completed 6 times per day for 7 days and again in the 24th week of the trial to assess exposure to levels of momentary positive affect, negative affect, rumination, control, and the occurrence of stressors throughout the day. These secondary analyses with data from 56 of the participants revealed that the intervention group showed a significantly larger increase in daily positive affect and perceptions of control compared to control participants over the course of the intervention. A treatment effect was also found for negative affect and rumination, whereby both decreased to a greater extent in the intervention group when compared with participants in the control condition. The 24-week aerobic training program had significant impacts on daily psychological processes in family caregivers, deepening our understanding of the robust effects of exercise on mental health
- …