621 research outputs found

    A Mitochondrial Health Index Sensitive to Mood and Caregiving Stress.

    Get PDF
    BACKGROUND:Chronic life stress, such as the stress of caregiving, can promote pathophysiology, but the underlying cellular mechanisms are not well understood. Chronic stress may induce recalibrations in mitochondria leading to changes either in mitochondrial content per cell, or in mitochondrial functional capacity (i.e., quality). METHODS:Here we present a functional index of mitochondrial health (MHI) for human leukocytes that can distinguish between these two possibilities. The MHI integrates nuclear and mitochondrial DNA-encoded respiratory chain enzymatic activities and mitochondrial DNA copy number. We then use the MHI to test the hypothesis that daily emotional states and caregiving stress influence mitochondrial function by comparing healthy mothers of a child with an autism spectrum disorder (high-stress caregivers, n = 46) with mothers of a neurotypical child (control group, n = 45). RESULTS:The MHI outperformed individual mitochondrial function measures. Elevated positive mood at night was associated with higher MHI, and nightly positive mood was also a mediator of the association between caregiving and MHI. Moreover, MHI was correlated to positive mood on the days preceding, but not following the blood draw, suggesting for the first time in humans that mitochondria may respond to proximate emotional states within days. Correspondingly, the caregiver group, which had higher perceived stress and lower positive and greater negative daily affect, exhibited lower MHI. This effect was not explained by a mismatch between nuclear and mitochondrial genomes. CONCLUSIONS:Daily mood and chronic caregiving stress are associated with mitochondrial functional capacity. Mitochondrial health may represent a nexus between psychological stress and health

    More than a feeling: A unified view of stress measurement for population science.

    Get PDF
    Stress can influence health throughout the lifespan, yet there is little agreement about what types and aspects of stress matter most for human health and disease. This is in part because "stress" is not a monolithic concept but rather, an emergent process that involves interactions between individual and environmental factors, historical and current events, allostatic states, and psychological and physiological reactivity. Many of these processes alone have been labeled as "stress." Stress science would be further advanced if researchers adopted a common conceptual model that incorporates epidemiological, affective, and psychophysiological perspectives, with more precise language for describing stress measures. We articulate an integrative working model, highlighting how stressor exposures across the life course influence habitual responding and stress reactivity, and how health behaviors interact with stress. We offer a Stress Typology articulating timescales for stress measurement - acute, event-based, daily, and chronic - and more precise language for dimensions of stress measurement

    Extension of PRISM by Synthesis of Optimal Timeouts in Fixed-Delay CTMC

    Full text link
    We present a practically appealing extension of the probabilistic model checker PRISM rendering it to handle fixed-delay continuous-time Markov chains (fdCTMCs) with rewards, the equivalent formalism to the deterministic and stochastic Petri nets (DSPNs). fdCTMCs allow transitions with fixed-delays (or timeouts) on top of the traditional transitions with exponential rates. Our extension supports an evaluation of expected reward until reaching a given set of target states. The main contribution is that, considering the fixed-delays as parameters, we implemented a synthesis algorithm that computes the epsilon-optimal values of the fixed-delays minimizing the expected reward. We provide a performance evaluation of the synthesis on practical examples

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals

    Probabilistic Timed Automata with Clock-Dependent Probabilities

    Get PDF
    Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.Comment: Full version of a paper published at RP 201

    Actor-Critic Policy Learning in Cooperative Planning

    Get PDF
    In this paper, we introduce a method for learning and adapting cooperative control strategies in real-time stochastic domains. Our framework is an instance of the intelligent cooperative control architecture (iCCA)[superscript 1]. The agent starts by following the "safe" plan calculated by the planning module and incrementally adapting its policy to maximize the cumulative rewards. Actor-critic and consensus-based bundle algorithm (CBBA) were employed as the building blocks of the iCCA framework. We demonstrate the performance of our approach by simulating limited fuel unmanned aerial vehicles aiming for stochastic targets. In one experiment where the optimal solution can be calculated, the integrated framework boosted the optimality of the solution by an average of %10, when compared to running each of the modules individually, while keeping the computational load within the requirements for real-time implementation.Boeing Scientific Research LaboratoriesUnited States. Air Force Office of Scientific Research (Grant FA9550-08-1-0086

    Optimal Strategies in Infinite-state Stochastic Reachability Games

    Full text link
    We consider perfect-information reachability stochastic games for 2 players on infinite graphs. We identify a subclass of such games, and prove two interesting properties of it: first, Player Max always has optimal strategies in games from this subclass, and second, these games are strongly determined. The subclass is defined by the property that the set of all values can only have one accumulation point -- 0. Our results nicely mirror recent results for finitely-branching games, where, on the contrary, Player Min always has optimal strategies. However, our proof methods are substantially different, because the roles of the players are not symmetric. We also do not restrict the branching of the games. Finally, we apply our results in the context of recently studied One-Counter stochastic games

    Probabilistic Model Checking for Energy Analysis in Software Product Lines

    Full text link
    In a software product line (SPL), a collection of software products is defined by their commonalities in terms of features rather than explicitly specifying all products one-by-one. Several verification techniques were adapted to establish temporal properties of SPLs. Symbolic and family-based model checking have been proven to be successful for tackling the combinatorial blow-up arising when reasoning about several feature combinations. However, most formal verification approaches for SPLs presented in the literature focus on the static SPLs, where the features of a product are fixed and cannot be changed during runtime. This is in contrast to dynamic SPLs, allowing to adapt feature combinations of a product dynamically after deployment. The main contribution of the paper is a compositional modeling framework for dynamic SPLs, which supports probabilistic and nondeterministic choices and allows for quantitative analysis. We specify the feature changes during runtime within an automata-based coordination component, enabling to reason over strategies how to trigger dynamic feature changes for optimizing various quantitative objectives, e.g., energy or monetary costs and reliability. For our framework there is a natural and conceptually simple translation into the input language of the prominent probabilistic model checker PRISM. This facilitates the application of PRISM's powerful symbolic engine to the operational behavior of dynamic SPLs and their family-based analysis against various quantitative queries. We demonstrate feasibility of our approach by a case study issuing an energy-aware bonding network device.Comment: 14 pages, 11 figure
    • …
    corecore