60 research outputs found

    Fluorescence quenching near small metal nanoparticles

    Full text link
    We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that non-local and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, dd, is significantly weaker than the d−4d^{-4} behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.Comment: 7 pages, 5 figure

    Plasmon-mediated superradiance near metal nanostructures

    Full text link
    We develop a theory of cooperative emission of light by an ensemble of emitters, such as fluorescing molecules or semiconductor quantum dots, located near a metal nanostructure supporting surface plasmon. The primary mechanism of cooperative emission in such systems is resonant energy transfer between emitters and plasmons rather than the Dicke radiative coupling between emitters. We identify two types of plasmonic coupling between the emitters, (i) plasmon-enhanced radiative coupling and (ii) plasmon-assisted nonradiative energy transfer, the competition between them governing the structure of system eigenstates. Specifically, when emitters are removed by more than several nm from the metal surface, the emission is dominated by three superradiant states with the same quantum yield as a single emitter, resulting in a drastic reduction of ensemble radiated energy, while at smaller distances cooperative behavior is destroyed by nonradiative transitions. The crossover between two regimes can be observed in distance dependence of ensemble quantum efficiency. Our numerical calculations incorporating direct and plasmon-assisted interactions between the emitters indicate that they do not destroy the plasmonic Dicke effect.Comment: 12 pages, 10 figure

    Coulomb and quenching effects in small nanoparticle-based spasers

    Full text link
    We study numerically the effect of mode mixing and direct dipole-dipole interactions between gain molecules on spasing in a small composite nanoparticles with a metallic core and a dye-doped dielectric shell. By combining Maxwell-Bloch equations with Green's function formalism, we calculate lasing frequency and threshold population inversion for various gain densities in the shell. We find that gain coupling to nonresonant plasmon modes has a negligible effect on spasing threshold. In contrast, the direct dipole-dipole coupling, by causing random shifts of gain molecules' excitation frequencies, hinders reaching the spasing threshold in small systems. We identify a region of parameter space in which spasing can occur considering these effects.Comment: 7 pages, 6 figure

    Extinction calculations of multi-sphere polycrystalline graphitic clusters - A comparison with the 2175 AA peak and between a rigorous solution and discrete-dipole approximations

    Get PDF
    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. In this paper we study the light scattering by compact and fractal polycrystalline graphitic clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters in the wavelength range 0.1 - 100 micron, namely, a rigorous solution (Gerardy & Ausloos 1982) and two different discrete-dipole approximation methods -- MarCODES (Markel 1998) and DDSCAT (Draine & Flatau 1994). We consider clusters of N = 4, 7, 8, 27,32, 49, 108 and 343 particles of radii either 10 nm or 50 nm, arranged in three different geometries: open fractal (dimension D = 1.77), simple cubic and face-centred cubic. The rigorous solution shows that the extinction of the fractal clusters, with N < 50 and particle radii 10 nm, displays a peak within 2% of the location of the observed interstellar extinction peak at ~4.6 inverse micron; the smaller the cluster, the closer its peak gets to this value. By contrast, the peak in the extinction of the more compact clusters lie more than 4% from 4.6 inverse micron. At short wavelengths (0.1 - 0.5 micron), all the methods show that fractal clusters have markedly different extinction from those of non-fractal clusters. At wavelengths > 5 micron, the rigorous solution indicates that the extinction from fractal and compact clusters are of the same order of magnitude. It was only possible to compute fully converged results of the rigorous solution for the smaller clusters, due to computational limitations, however, we find that both discrete-dipole approximation methods overestimate the computed extinction of the smaller fractal clusters.Comment: Corrections added in accordance with suggestions by the referee. 12 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Cooperative emission of light by an ensemble of dipoles near a metal nanostucture: The plasmonic Dicke effect

    Full text link
    We identify a new mechanism for cooperative emission of light by an ensemble of N dipoles near a metal nanostructure supporting a surface plasmon.The cross-talk between emitters due to virtual plasmon exchange leads to a formation of three plasmonic super-radiant modes whose radiative decay rates scales with N, while the total radiated energy is thrice that of a single emitter. Our numerical simulations indicate that the plasmonic Dicke effect survives non-radiative losses in the metal.Comment: 4 pages, 4 figure

    Interstellar extinction by fractal polycrystalline graphite clusters?

    Get PDF
    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. To determine how these structural features would affect the interpretation of the observed interstellar extinction peak at ∼4.6μ\sim 4.6 \mum, we have calculated the extinction by compact and fractal polycrystalline graphite clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters, namely, a rigorous solution and two different discrete-dipole approximation methods.Comment: 4 pages, 2 figures. Proceedings for the 6'th International Conference on Electromagnetic and Light Scattering by Non-spherical Particles, Marts 2002, Florid

    Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles

    Get PDF
    We present a microscopic model for surface-enhanced Raman scattering (SERS) from molecules adsorbed on small noble-metal nanoparticles. In the absence of direct overlap of molecular orbitals and electronic states in the metal, the main enhancement source is the strong electric field of the surface plasmon resonance in a nanoparticle acting on a molecule near the surface. In small particles, the electromagnetic enhancement is strongly modified by quantum-size effects. We show that, in nanometer-sized particles, SERS magnitude is determined by a competition between several quantum-size effects such as the Landau damping of surface plasmon resonance and reduced screening near the nanoparticle surface. Using time-dependent local density approximation, we calculate spatial distribution of local fields near the surface and enhancement factor for different nanoparticles sizes.Comment: 8 pages, 6 figures. Considerably extended final versio
    • …
    corecore