104 research outputs found

    Effect of [111] texture on the perpendicular magnetic anisotropy of Co/Ni multilayers

    Full text link
    [111]fcc[111]fcc oriented [Co(2 Å)/Ni(7 Å)]20[Co(2Å)/Ni(7Å)]20 multilayers were prepared by molecular beam epitaxy at room temperature on epitaxial Au/Ag buffer layers grown on chemically etched Si(111) surfaces. NH4FNH4F etching of Si(111) leads to a smaller spread in the 〈111〉 orientation of the Au/Ag buffer layers and the Co/Ni multilayers as compared to a similar sample prepared on HF-etched Si(111). This results in a stronger perpendicular magnetic anisotropy as determined from the magnetic hysteresis loops. Cross-sectional transmission electron microscopy studies show that the magnetic multilayer film is not flat but has significant waviness at both top and bottom surfaces. The observed waviness originates in part from the waviness already present on the surface of the Au buffer layer and appears to be further enhanced by the difference in the surface free energies of Au and the magnetic elements. A flatter Au/Ag buffer layer is essential to further improve the [111] texture of the [Co/Ni] multilayers. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69592/2/JAPIAU-84-6-3273-1.pd

    Aging Effect in Ceramic Superconductors

    Full text link
    A three-dimensional lattice of the Josephson junctions with a finite self-conductance is employed to model ceramic superconductors. Using Monte Carlo simulations it is shown that the aging disappears in the strong screening limit. In the weeak screening regime aging is present even at low temperatures. For intermediate values of the self-inductance aging occurs at intermediate temperatures interval but is suppressed entirely at high and low temperatures. Our results are in good agreement with experiments.Comment: 5 pages, 5 eps figures, to appear in Physical Review Letter

    Light scattering and trapping in different thin film photovoltaic device

    Get PDF
    Light trapping in different thin film technologies is investigated in the context of the European integrated project ATHLET since it allows for thinner devices and thus for reduction of costs for absorber material preparation as well as for advanced multi-junction solar cells. In silicon technology, rough interfaces are typically introduced by roughening of substrates, transparent conducting oxides (TCOs) and/or reflectors at the back side to scatter the light into the absorber material. Well known rough TCOs, plasma-textured poly-Si as well as rough Cu(In,Ga)Se2 (CIGS) absorbers are used as source for light scattering in microcrystalline silicon solar cells and compared regarding their surface roughness. The results prove that CIGS and poly silicon solar cells provide efficient light scattering by the surface features of the rough absorber

    The Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.Comment: 53 pages, 15 figure

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file

    Tailored ß-Cyclodextrin Blocks the Translocation Pores of Binary Exotoxins from C. Botulinum and C. Perfringens and Protects Cells from Intoxication

    Get PDF
    International audienceBackgroundClostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components.Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component.Conclusions/SignificanceThe described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria

    Simple and clear evidence for positive feedback limitation by bipolar behavior during scanning electrochemical microscopy of unbiased conductors

    Get PDF
    On the basis of an experimentally validated simple theoretical model, it is demonstrated unambiguously that when an unbiased conductor is probed by a scanning electrochemical tip (scanning electrochemical microscopy, SECM), it performs as a bipolar electrode. Though already envisioned in most recent SECM theories, this phenomenon is generally overlooked in SECM experimental investigations. However, as is shown here, this may alter significantly positive feedback measurements when the probed conductor is not much larger than the ti

    The Interface Region Imaging Spectrograph (IRIS)

    Full text link
    • …
    corecore