423 research outputs found
Electrodeposition of iridium
Platinum group metal deposits are widely used in the hightech areas for a number of applications. Electrodeposited iridium is used for many functional applications. An alloy of platinum and iridium is used as anode for electrochemical oxidative reactions. An attempt is being made at CECRI to develop platinum iridium alloy. A number of iridium electrolytes have been studied and the results are presented in the paper
Resonance frequency of different interfacial modes and steady streaming by a slug trapped at one end of a millichannel
Active micropumping and micromixing using oscillating bubbles form the basis
for various Lab-on-chip applications. Acoustically excited oscillatory bubbles
are commonly used in active particle sorting, micropumping, micromixing,
ultrasonic imaging, cell lysis and rotation. For efficient micromixing, the
system must be operated at its resonant frequency where amplitude of
oscillation is maximum. This ensures that high-intensity cavitation
microstreaming is generated. In this work, we determine the resonant
frequencies for the different surface modes of oscillation of a rectangular gas
slug confined at one end of a millichannel using perturbation techniques and
matched asymptotic expansions. We explicitly specify the oscillation frequency
of the interface and compute the surface mode amplitudes from the interface
deformation. This oscillatory flow field at the leading order is also
determined. The results are compared are compared with the experiments by K.
Ryu, S. K. Chung and S. K. Cho, Journal of Association of Laboratory Automation
15(3) 163 - 171. The effect of aspect ratio of gas slug on observable streaming
is analysed. The predictions of surface modes from perturbation theory are
validated with simulations of the system done in ANSYS Fluent.Comment: Submitted for review in Physical Review
Hydrodynamics of a Compound Drop in Plane Poiseuille Flow
We numerically investigate the hydrodynamics of a compound drop in a plane
Poiseuille flow under Stokes regime. A neutrally buoyant, initially concentric
compound drop is released into a fully developed flow, where it migrates to its
equilibrium position. Based on the results, we find that the core-shell
interaction affects the dynamics of both the core and the compound drop. During
the initial transient period, the core revolves about the center of the
compound drop due to the internal circulation inside the shell. At equilibrium,
depending upon the nature of the flow field inside the shell, we identify two
distinct core behaviors: stable state and limit-cycle state. In the stable
state, the core stops revolving and moves outward very slowly. The core in the
limit-cycle state continues to revolve in a nearly fixed orbit with no further
inward motion. We also find that the migration of the compound drop affects the
eccentricity of the core significantly. A comparison with the simple drop
reveals that the core enhances the deformation of the compound drop. The
outward moving core in stable state pushes the compound drop towards the walls,
and the revolving core in limit-cycle state makes the compound drop to
oscillate at its equilibrium position. From the parametric study, we find that
the core affects the compound drop dynamics only at intermediate sizes, and
increase in any parameter sufficiently causes a transition from limit-cycle
state to stable state.Comment: submitted to Physics of Fluid
Optimizing performance of liquid-liquid extraction in stratified flow in micro-channels
Several applications such as liquid-liquid extraction in micro-fluidic devices are concerned with the flow of two immiscible liquid phases. Two characteristic flow regimes are observed in these systems: the stratified flow and the slug flow. In this work, two phase (liquid-liquid) stratified flows in a rectangular geometry are first analyzed. The influence of physical properties, in particular the viscosity of the two liquids, on the velocity profiles is determined analytically. The flow profiles are classified in the parameter space of physical properties (viscosity ratio) and operating conditions (flow-rate ratio). Viscosity affects the shapes of the velocity profile and the dispersion of a solute in each phase. The question addressed is: can the viscosity of a fluid be exploited to improve extraction efficiency? This would then give us an extra degree of freedom to control and improve extraction efficiency when there can be more than one possible candidate for extractant. The mass transfer behavior in the liquid-liquid system is numerically simulated using both a finite-difference and a finite-volume method. This helps understanding of the role of various operating conditions as pressure drop, flow rate, etc on the behavior of the system. Our analysis can be used to establish guidelines for carrying out experiments. It is found that the effect of the difference in the shape of the flow profiles on mass transfer is not very significant for some modes of operation. The predictions of our model are compared with experimental results from the literature
- …
