55 research outputs found

    Use of infrared thermography imaging for assessing heat tolerance in high and low iron pearl millet lines

    Get PDF
    In the arid regions of Asia and Africa, pearl millet serves as a staple source of dietary energy and mineral micronutrients for millions of people. These regions are more vulnerable to increased temperature. The availability of rapid and efficient screening tools based on the relevant non-destructive quantifiable traits would facilitate pearl millet improvement for heat tolerance. The objective of this study was to evaluate pearl millet lines with contrast micronutrients for heat tolerance using infrared thermal imaging, a rapid proxy-canopy (panicle and flag leaf) temperature measurement. Results showed the highly significant genotypic differences between high-Fe and low-Fe genotypes for grain Fe and Zn densities and agronomic traits. Both high-Fe and low-Fe group genotypes differed significantly for panicle temperature depression (PTD) during high- vapor deficit (VPD) at stigma stage (3.0 to 6.73°C). PTD values were positive across all genotypes during stigma stage and were very low or negative during the low-VPD. Cooler canopy temperature (high-PTD) was observed during stigma stage rather than seed-set stage at higher-VPD in both high-Fe and low-Fe genotypes. The cooler temperature achieved by panicle might be helpful in maintaining stigma receptivity for longer periods in the female parents, whereas in male parents it might be helpful in maintaining pollen viability for longer periods. Flag leaf temperature (FTD) was cooler than PTD at both high-VPD and low-VPD as well in both stigma (less by 2.1°C) and grain-filling stage (less by 2.7°C), again signifying that the reproductive parts are more prone to heat stress as compared to vegetative parts. Since, thermal imaging discriminates the heat stress and non-stress canopies, this can serve as a proxy canopy temperature tool for heat stress tolerance screening in pearl millet

    Energy Efficient Multi-hop routing scheme using Taylor based Gravitational Search Algorithm in Wireless Sensor Networks

    Get PDF
    A group of small sensors can participate in the wireless network infrastructure and make appropriate transmission and communication sensor networks. There are numerous uses for drones, including military, medical, agricultural, and atmospheric monitoring. The power sources available to nodes in WSNs are restricted. Furthermore, because of this, a diverse method of energy availability is required, primarily for communication over a vast distance, for which Multi-Hop (MH) systems are used. Obtaining the optimum routing path between nodes is still a significant problem, even when multi-hop systems reduce the cost of energy needed by every node along the way. As a result, the number of transmissions must be kept to a minimum to provide effective routing and extend the system\u27s lifetime. To solve the energy problem in WSN, Taylor based Gravitational Search Algorithm (TBGSA) is proposed, which combines the Taylor series with a Gravitational search algorithm to discover the best hops for multi-hop routing. Initially, the sensor nodes are categorised as groups or clusters and the maximum capable node can access the cluster head the next action is switching between multiple nodes via a multi-hop manner. Initially, the best (CH) Cluster Head is chosen using the Artificial Bee Colony (ABC) algorithm, and then the data is transmitted utilizing multi-hop routing. The comparison result shows out the extension of networks longevity of the proposed method with the existing EBMRS, MOGA, and DMEERP methods. The network lifetime of the proposed method increased by 13.2%, 21.9% and 29.2% better than DMEERP, MOGA, and EBMRS respectively

    Design and Development of Automatic Weed Detection and Removal System

    Get PDF
    Most important approach of plant life is weed handling. Herbicides are used all over the world to control agricultural weeds now a day. Moreover practical weed controlling is done by labors and using these herbicides. In this paper automatic weed detection and removal systems was proposed to avoid the problems like herbicides staying in the agricultural fields, which leads to also an environment problem and livings of human beings. To detect and differentiate the weeds from the crop, machine vision system has been used. Two basic designs of mechanical methods are used to automatically remove weeds from the seedline. That is a mechanical rotary weeder is used to remove weeds from the inter rows and torsion weeder which removes the weeds from the within rows. This system design is based on the design of torsion weeder. The above system is designed to avoid the consumption of herbicides in the agriculture area and to replace the manpower

    Comparison of LEACH protocol with Wormhole Attack and without Wormhole Attack in Wireless Sensor Networks

    Get PDF
    ABSTRACT: In Wireless Sensor Networks, routing is the major concern. It comprises of small sensor nodes with limited resources. It is necessary to introduce a routing protocol to extend network life time and to reduce the power consumption in sensor nodes. LEACH is one of the most interested techniques that offer an efficient way to minimize the power consumption in sensor networks. It uses self organizing and dynamic cluster formation which makes it attractive to various routing attacks, such as Denial of Service (DoS), Black hole, Wormhole and Sybil attacks. Wormhole attack is a Denial of Service attack launched by malicious nodes. It records packets at one location and tunnels them into another location. To check the reliable operation of LEACH, implement wormhole attack and evaluated the LEACH protocol in terms of metrics like throughput, average end-to-end delay, Packet Delivery Ratio (PDR). The evaluation of LEACH with wormhole attack has been done with the help of NS2 simulator. Watchdog is a monitoring technique which detects the misbehaving nodes in the network. It can be implemented in LEACH. In Watchdog-LEACH, some nodes are considered as watchdogs and some changes are applied on LEACH protocol for intrusion detection. Watchdog-LEACH is able to protect against a wide range of attacks and it provides security, energy efficiency and memory efficiency. Comparison made on LEACH with wormhole attack and LEACH with watchdog shows that LEACH with watchdog achieves high throughput, Packet Delivery Ratio and low End to End Delay

    Impact of IoT on Renewable Energy

    Get PDF
    The emerging computing technology in this era is the Internet of Things. The network of intelligence that bridges various devices, systems located in remote locations together by means of cloud portal. IoT maybe equipped with millions or billions of devices. IoT handles large volume of data, process the huge data and performs useful control actions to make our life safe and simple. IoT evolves Human-human communication with thing-thing communication. IoT applications are not confined to a particular sector. In the fields such as health care, smart homes, industries, transportation, etc., the technology which is more influential is IoT. Energy sectors are now undergoing transformation. The transformation is driven by IOT. Green energy without IoT cannot be imagined in this energy sector. Renewable energy sources will be the major power producers among all the other sources due to the depletion of conventional energy sources. Among the renewable energy sources, Solar and Wind contributes more when compared to geothermal, biomass, etc. Renewable energy power production depends on environmental factors such as temperature, wind speed, light intensity etc. These factors affect the performance of energy conversion in renewable energy sources. Since our future generation will depend only on renewable energy, it becomes necessary for the researchers to integrate IOT to provide reliable and affordable energy. Renewable power generation helps in reducing the toxic level of gases which may be produced by thermal power stations during power generation. IoT brings about changes from generation to transmission to distribution. For example, let us compare the traditional grid with that of the smart grid. In the case of traditional one-way communication exists that is power produced from the power station is transmitted to the customer. The customer has to pay for the energy consumed. But smart grid has two-way communication. The customer has the capability to pay for the energy consumed only and if excess power produced can be transmitted to the grid. IoT helps in analyzing the demand as well the wastage of energy, helps in scheduling the load in order to reduce the cost. The sensors and data sciences with IOT helps in achieving the automation and intelligent operation of renewable energy farms, increases the efficiency and reliability of the farms to meet our future power demand

    Chalcone-imidazolone conjugates induce apoptosis through DNA damage pathway by affecting telomeres

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is one of the most prevalent cancers in the world and more than one million women are diagnosed leading to 410,000 deaths every year. In our previous studies new chalcone-imidazolone conjugates were prepared and evaluated for their anticancer activity in a panel of 53 human tumor cell lines and the lead compounds identified were 6 and 8. This prompted us to investigate the mechanism of apoptotic event.</p> <p>Results</p> <p>Involvement of pro-apoptotic protein (Bax), active caspase-9 and cleavage of retinoblastoma protein was studied. Interestingly, the compounds caused upregulation of p21, check point proteins (Chk1, Chk2) and as well as their phosphorylated forms which are known to regulate the DNA damage pathway. Increased p53BP1 foci by immunolocalisation studies and TRF1 suggested the possible involvement of telomere and associated proteins in the apoptotic event. The telomeric protein such as TRF2 which is an important target for anticancer therapy against human breast cancer was extensively studied along with proteins involved in proper functioning of telomeres.</p> <p>Conclusions</p> <p>The apoptotic proteins such as Bax, active caspase-9 and cleaved RB are up-regulated in the compound treated cells revealing the apoptotic nature of the compounds. Down regulation of TRF2 and upregulation of the TRF1 as well as telomerase assay indicated the decrease in telomeric length revealing telomeric dysfunction and thereby controlling the rapid rate of cell proliferation. In summary, chalcone-imidazolone conjugates displayed significant DNA damage activity particularly at telomeres and caused both apoptosis and senescence-like growth arrest which suggested that these compounds have potential activity against breast carcinoma.</p

    Effect of Benzothiazole based conjugates in causing apoptosis by Regulating p53, PTEN and MAP Kinase proteins affecting miR-195a and miR-101-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) accounts for majority of liver cancers and is the leading cause of cancer related death in Asia. Like any other cancer, HCC develops when there is a mutation to the cellular machinery that causes the cell to replicate at a higher rate and results in the loss of apoptosis. Therefore, a delicate balance between the expression of various genes involved in proliferation and apoptosis decide the ultimate fate of the cell to undergo rapid proliferation (cancer) or cell death.</p> <p>Results</p> <p>The benzothiazole based compounds exhibited effective cytotoxicity at 4 ÎŒM concentration and have shown G1 cell cycle arrest with decrease in levels of G1 cell cycle proteins such as cyclin D1 and Skp2. Involvement of tumour suppressor proteins such as PTEN and p53 was studied. Interestingly these compounds displayed decrease in the phosphorylated forms of AKT, p38 MAPK and ERK1/2 which play a vital role in cell proliferation. Compounds have exhibited strong and significant effect on the expression of micro RNAs such as miR-195a & miR-101-1 which regulate hepatic cell proliferation.</p> <p>Conclusions</p> <p>The cell cycle arrest and apoptotic inducing nature of these compounds was revealed by FACS, BrdU cell proliferation and tunel assays. Compounds affected both tumour suppressor proteins as well as proteins that are involved in active cell proliferation. Micro RNAs whose target is Cyclin D1 such as miR-195a and miR-101-1 that is required for growth of hepatoma cells was drastically affected. These compounds caused apoptosis by activating caspase-3 and PARP.</p

    Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea

    Get PDF
    The reproductive phase of chickpea (Cicer arietinum L.) is more sensitive to water deficits than the vegetative phase. The characteristics that confer drought tolerance to genotypes at the reproductive stage are not well understood; especially which characteristics are responsible for differences in seed yield under water stress. In two consecutive years, 10 genotypes with contrasting yields under terminal drought stress in the field were exposed to a gradual, but similar, water stress in the glasshouse. Flower number, flower + pod + seed abortion percentage, pod number, pod weight, seed number, seed yield, 100-seed weight (seed size), stem + leaf weight and harvest index (HI) were recorded in well watered plants (WW) and in water-stressed plants (WS) when the level of deficit was mild (phase I), and when the stress was severe (phase II). The WS treatment reduced seed yield, seed and pod number, but not flower + pod + seed abortion percentage or 100-seed weight. Although there were significant differences in total seed yield among the genotypes, the ranking of the seed yield in the glasshouse differed from the ranking in the field, indicating large genotype × environment interaction. Genetic variation for seed yield and seed yield components was observed in the WW treatment, which also showed differences across years, as well as in the WS treatment in both the years, so that the relative seed yield and relative yield components (ratio of values under WS to those under WW) were used as measures of drought tolerance. Relative total seed yield was positively associated with relative total flower number (R2 = 0.23 in year 2) and relative total seed number (R2 = 0.83, R2 = 0.79 in years 1 and 2 respectively). In phase I (mild stress), relative yield of seed produced in that phase was found to be associated with the flower number in both the years (R2 = 0.69, R2 = 0.76 respectively). Therefore, the controlled drought imposition that was used, where daily water loss from the soil was made equal for all plants, revealed genotypic differences in the sensitivity of the reproductive process to drought. Under these conditions, the seed yield differences in chickpea were largely related to the capacity to produce a large number of flowers and to set seeds, especially in the early phase of drought stress when the degree of water deficit was mild

    Salt Stress Delayed Flowering and Reduced Reproductive Success of Chickpea (Cicer arietinumL.), A Response Associated with Na+Accumulation in Leaves

    Get PDF
    Salinity is known to reduce chickpea yields in several regions of the world. Although ion toxicity associated with salinity leads to yield reductions in a number of other crops, its role in reducing yields in chickpea growing in saline soils is unclear. The purpose of this study was to (i) identify the phenological and yield parameters associated with salt stress tolerance and sensitivity in chickpea and (ii) identify any pattern of tissue ion accumulation that could relate to salt tolerance of chickpea exposed to saline soil in an outdoor pot experiment. Fourteen genotypes of chickpea (Cicer arietinum L.) were used to study yield parameters, of which eight were selected for ion analysis after being grown in soil treated with 0 and 80 mm NaCl. Salinity delayed flowering and the delay was greater in sensitive than tolerant genotypes under salt stress. Filled pod and seed numbers, but not seed size, were associated with seed yield in saline conditions, suggesting that salinity impaired reproductive success more in sensitive than tolerant lines. Of the various tissues measured for concentrations of Cl−, Na+ and K+, higher seed yields in saline conditions were positively correlated with higher K+ concentration in seeds at the mid-filling stage (R2 = 0.55), a higher K+/Na+ ratio in the laminae of fully expanded young leaves (R2 = 0.50), a lower Na+ concentration in old green leaves (R2 = 0.50) and a higher Cl− concentration in mature seeds. The delay in flowering was associated with higher concentrations of Na+ in the laminae of fully expanded young leaves (R2 = 0.61) and old green leaves (R2 = 0.51). We conclude that although none of the ions appeared to have any toxic effect, Na+ accumulation in leaves was associated with delayed flowering that in turn could have played a role in the lower reproductive success in the sensitive lines

    Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea

    Get PDF
    Salinity is a major problem worldwide and improving salt tolerance of chickpea (Cicer arietinum L.) will allow expansion of production to more marginal areas. Plant reproduction suffers under salt stress in chickpea, but it remains unclear which process is most affected and what traits discriminate tolerant from sensitive lines. Three pot experiments were carried out to compare the effects of salt application (17 g NaCl kg−1 Alfisol) at sowing (SS) and at the start of flowering (SF) on growth, canopy transpiration, plant architecture, and flower, pod and seed development (timing, numbers, mass, abortion). Six pairs of tolerant/sensitive lines with similar flowering times within each pair, but different among the pairs, were used. Shoot biomass was similar in tolerant and sensitive lines in the SS and SF treatments, whereas the seed yield decreased more under SS and SF treatments in the sensitive lines. The flower, pod and seed numbers within all pairs was higher in the tolerant than in the sensitive lines in the non-saline controls, but the differences in numbers of seeds and pods further increased in both the SS and SF treatments. By contrast, neither the duration of flowering or podding, nor the percentage of flower or pod abortion, discriminated tolerant from sensitive lines. In non-saline controls the numbers of primary branches was 100% higher across the sensitive lines, whereas the number of tertiary branches was 8-fold higher across tolerant lines. The relative transpiration of the tolerant lines in the salt treatments was above that for the sensitive lines in three pairs of tolerant/sensitive lines, but did not differ within two pairs. Our results demonstrate that constitutive traits, i.e. numbers of flowers and tertiary branches, and adaptive traits, i.e. high number of seeds under salt stress, are both critical aspects of salinity tolerance in chickpea
    • 

    corecore