4 research outputs found

    Spontaneous and induced ferroelectricity in the BiFe1−xScxO3 perovskite ceramics

    Get PDF
    High-pressure synthesis method allows obtaining single-phase perovskite BiFe1-xScxO3 ceramics in the entire concentration range. As-prepared compositions with x from 0.30 to 0.55 have the antipolar orthorhombic Pnma structure but can be irreversible converted into the polar rhombohedral R3c or the polar orthorhombic Ima2 phase via annealing at ambient pressure. Microstructure defects and large conductivity of the high-pressure-synthesized ceramics make it difficult to study and even verify their ferroelectric properties. These obstacles can be overcome using piezoresponse force microscopy (PFM) addressing ferroelectric behavior inside single grains. Herein, the PFM study of the BiFe1-xScxO3 ceramics (0.30 ≤ x ≤ 0.50) is reported. The annealed samples show a strong PFM contrast. Switching of domain polarity by an electric field confirms the ferroelectric nature of these samples. The as-prepared BiFe0.5Sc0.5O3 ceramics demonstrate no piezoresponse in accordance with the antipolar character of the Pnma phase. However, application of a strong enough electric field induces irreversible transition to the ferroelectric state. The as-prepared BiFe0.7Sc0.3O3 ceramics show coexistence of ferroelectric and antiferroelectric grains without poling. It is assumed that mechanical stress caused by the sample polishing can be also a driving force of phase transformation in these materials alongside temperature and external electric field.publishe

    Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System

    Get PDF
    The annealing behavior of (1-x)BiMg0.5Ti0.5O3–xBiZn0.5Ti0.5O3 [(1-x)BMT–xBZT] perovskite solid solutions synthesized under high pressure was studied in situ via X-ray diffraction and piezoresponse force microscopy. The as prepared ceramics show a morphotropic phase boundary (MPB) between the non-polar orthorhombic and ferroelectric tetragonal states at 75 mol. % BZT. It is shown that annealing above 573 K results in irreversible changes in the phase diagram. Namely, for compositions with 0.2 < x < 0.6, the initial orthorhombic phase transforms into a ferroelectric rhombohedral phase. The new MPB between the rhombohedral and tetragonal phases lies at a lower BZT content of 60 mol. %. The phase diagram of the BMT–BZT annealed ceramics is formally analogous to that of the commercial piezoelectric material lead zirconate titanate. This makes the BMT–BZT system promising for the development of environmentally friendly piezoelectric ceramicspublishe

    Magnetic behaviour of perovskite compositions derived from BiFeO3

    Get PDF
    The phase content and sequence, the crystal structure, and the magnetic properties of perovskite solid solutions of the (1−y)BiFeO3–yBiZn0.5Ti0.5O3 series (0.05 ≤ y ≤ 0.90) synthesized under high pressure have been studied. Two perovskite phases, namely the rhombohedral R3c and the tetragonal P4mm, which correspond to the structural types of the end members, BiFeO3 and BiZn0.5Ti0.5O3, respectively, were revealed in the as-synthesized samples. The rhombohedral and the tetragonal phases were found to coexist in the compositional range of 0.30 ≤ y ≤ 0.90. Magnetic properties of the BiFe1−y [Zn0.5Ti0.5]yO3 ceramics with y < 0.30 were measured as a function of temperature. The obtained compositional variations of the normalized unit-cell volume and the Néel temperature of the BiFe1−y [Zn0.5Ti0.5]yO3 perovskites in the range of their rhombohedral phase were compared with the respective dependences for the BiFe1−yB 3+yO3 perovskites (where B 3+ = Ga, Co, Mn, Cr, and Sc). The role of the high-pressure synthesis in the formation of the antiferromagnetic states different from the modulated cycloidal one characteristic of the parent BiFeO3 is discussed.publishe

    The orthorhombic-tetragonal morphotropic phase boundary in high-pressure synthesized BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 perovskite solid solutions

    No full text
    (1–x)BiMg0.5Ti0.5O3− xBiZn0.5Ti0.5O3 [(1− x)BMT–xBZT] ceramics of perovskite solid solutions, in which BMT and BZT are lead-free structural analogs of PbZrO3 and PbTiO3, respectively, have been synthesized under high pressure. It was found that the as-prepared compositions with a relative BZT content of <75 mol% are orthorhombic (space group Pnnm), while those with a BZT content above this value are tetragonal (P4mm). In the solution with x = 0.75, both phases coexist forming a morphotropic phase boundary (MPB). The compositional dependence of the normalized unit cell volume exhibits a ~5% jump at x = 0.75. At the same time, the microstructure of the obtained (1–x)BMT− xBZT ceramics shows no particular variation with the chemical composition over MPB. Piezoresponse force microscopy measurements indicate the ferroelectric state of the studied materials and allowed one to estimate their intrinsic piezoelectric coefficients.publishe
    corecore